# Solution to the minimum harmonic index of graphs with given minimum degree

Document Type : Research Paper

Authors

Guangdong University of Foreign Studies

Abstract

The harmonic index of a graph $G$ is defined as $H(G)=\sum\limits_{uv\in E(G)}\frac{2}{d(u)+d(v)}$‎, ‎where $d(u)$ denotes the degree of a vertex $u$ in $G$‎. ‎Let $\mathcal{G}(n,k)$ be the set of simple $n$-vertex graphs with minimum degree at least $k$‎. ‎In this work we consider the problem of determining the minimum value of the‎ ‎harmonic index and the corresponding extremal graphs among $\mathcal{G}(n,k)$‎. ‎We solve the problem for each integer $k (1\le k\le n/2)$ and show the corresponding extremal graph is the complete split graph $K_{k,n-k}^*$‎. ‎This result together with our previous result which solve the problem for each integer $k (n/2 \le k\le n-1)$ give a complete solution of the problem‎.

Keywords 20.1001.1.22518657.2018.7.2.3.8

Main Subjects

#### References

 O. Favaron, M. Mahó and J.F. Saclé, Some eigenvalue properties in graphs (conjectures of Graffiti-II), Discrete Math., 111 (1993) 197–220.
 J. Liu, Harmonic index of dense graphs, Ars Combinatoria, 120 (2015) 293–304.
 L. Lovász, Combinatorial problems and exercises, Akadémiai Kiadó, Budapest, 1979.
 X. Li and I. Gutman, Mathematical Aspects of Randic-Type Molecular Structure Descriptors, Mathematical Chem-istry Monographs, Kragujevac, (2006) pp. VI+330.
 X. Li and Y. T. Shi, A survey on the Randic index, MATCH Commun. Math. Comput. Chem., 59 (2008) 127–156.
 B. Lucic, N. Trinajstic and B. Zhou, Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem. Phys. Lett., 475 (2009) 146–148.
 R. Wu, Z. Tang and H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat, 27 (2013) 51–55.
 L. Zhong, The harmonic index for graphs, Appl. Math. Lett., 25 (2012) 561–566.
 L. Zhong, The harmonic index on unicyclic graphs, Ars Combin., 104 (2012) 261–269.