[1] J. Bang-Jensen and G. Z. Gregory, Digraphs: Theory, Algorithms and Applications, Springer Monographs in
Mathematics, 2nd ed, 2009.
[2] A. E. Brouwer, personal homepage: http://www.cwi.nl/~aeb/math/dsrg/dsrg.html.
[3] A. E. Brouwer, A. M. Cohen and A. Neumaier, distance-regular Graphs, Springer-Verlag, Berlin-New York,
1989.
[4] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, 2012; available online at http://homepages.cwi.nl/~aeb/math/ipm/.
[5] F. Comellas, M. A. Fiol, J. Gimbert and M. Mitjana, Weakly distance-regular digraphs, J. Combin. Theory
Ser. B, 90 (2004) 233–255.
[6] D. M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application, VEB Deutscher Verlag
der Wissenschaften, Berlin, second edition, 1982.
[7] C. Dalfo, E.R. Van Dam, M. A. Fiol and E. Garriga, Dual concepts of almost distance-regularity and the
spectral excess theorem, Discrete Math., 312 (2012) 2730–2734.
[8] C. Dalfo, E. R. Van Dam, M. A. Fiol, E. Garriga and B. L. Gorissen, On almost distance-regular graphs, J.
Combin. Theory Ser. A, 118 (2011) 1094–1113.
[9] R. M. Damerell, Distance-transitive and distance-regular digraphs, J. Combin. Theory Ser. B, 31 (1981) 46–53.
[10] A. M. Duval, A directed graph version of strongly regular graphs, J. Combin. Theory Ser. A, 47 (1988) 71–100.
[11] E. R. Van Dam, The spectral excess theorem for distance-regular graphs: a global (over)view, Electron. J.
Combin., 15 (2008), pp. 10.
[12] E. R. Van Dam and M. A. Fiol, A short proof of the odd-girth theorem, Electron. J. Combin., 19 (2012) pp.
5.
[13] E. R. Van Dam and M. A. Fiol, The Laplacian Spectral Excess Theprem for distance-Regular Graphs, Linear
Algebra Appl., 458 (2014) 1–6.
[14] Carl D. Meyer, Matrix analysis and applied linear algebra, Philadelphia, USA , 101 (2011) 486–489.
[15] M. A. Fiol, Algebraic characterizations of distance-regular graphs, Discrete Math., 246 (2002) 111–129.
[16] M. A. Fiol, On some approaches to the spectral excess theorem for nonregular graphs, J. Combin. Theory Ser. A, 120 (2013) 1285–1290.
[17] M. A. Fiol and E. Garriga, From local adjacency polynomials to locally pseudo-distance-regular graphs, J.
Combin. Theory Ser. B, 71 (1997) 162–183.
[18] M. A. Fiol, S. Gago and E. Garriga, A simple proof of the spectral excess theorem for distance-regular graphs, Linear Algebra Appl., 432 (2010) 2418–2422.
[19] M. A. Fiol, E. Garriga and J. L. A. Yebra, Locally pseudo-distance-regular graphs, J. Combin.Theory Ser. B,
68 (1996) 179–205.
[20] G. S. Lee and C. W. Weng, The spectral excess theorem for general graphs, J. Combin. Theory Ser. A, 119 (2012) 1427–1431.
[21] G. R. Omidi, A spectral excess theorem for normal digraphs, J. Algebraic Combin., 42 (2015) 537–554.