[1] B. D. Acharya, Spectral criterion for cycle balance in networks, J. Graph Theory, 4 (1980) 1–11.
[2] R. B. Bapat, Graphs and matrices, 27, Springer, London; Hindustan Book Agency, New Delhi, 2010.
[3] R. B. Bapat and S. Roy, On the adjacency matrix of a block graph, Linear and Multilinear Algebra, 62 (2014) 406–418.
[4] D. Cartwright and F. Harary, Structural balance: a generalization of Heider’s theory, Psychol Rev., 63 (1956) 277–293.
[5] J. Ding and A. Zhou, Eigenvalues of rank-one updated matrices with some applications, Appl. Math. Lett., 20 (2007)
1223–1226.
[6] D. Easley and J. Kleinberg, Networks, crowds, and markets, 6, Cambridge Univ Press, 2010.
[7] F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2 (1953–54) 143–146.
[8] T. Amdeberhan, Determinant of a matrix having diagonal and subdiagonal entries zero, MathOverflow, http://
mathoverflow.net/q/264167, (version: 2017-03-10).
[9] R. Singh, Determinant of a matrix having diagonal and subdiagonal entries zero, MathOverflow, http://mathoverflow.
net/q/264264, (version: 2017-03-10).
[10] R. Singh and R. B. Bapat, Eigenvalues of some signed graphs with negative cliques, arXivpreprintarXiv:1702.06322,
(2017).
[11] R. Singh and R. B. Bapat, On characteristic and permanent polynomials of a matrix, Spec. Matrices, 5 (2017) 97–112.
[12] H. Zhou, The inverse of the distance matrix of a distance well-defined graph, Linear Algebra Appl., 517 (2017) 11–29.