[1] G. Battail, Building long codes by combination of simple ones , thanks to weighted-output deco ding, in Pro c. URSI ISSSE Erlangen Germany, 1989.
[2] P. Elias, Error-free co ding, IRE Trans. Inform. Theory , 29{37 (1954).
[3] K. M. Krishnan and P. Shankar, Computing the stopping distance of a Tanner graph is NP-hard, IEEE Trans.
Inform. Theory , 53 (2007) 2278{2280.
[4] R. J. McEliece, Are there turbo-codes on Mars? , Shannon Lecture, Pro c. IEEE Int. Symp. Inform. Theory, Chicago, IL, USA, 2004.
[5] R. L. Miller, Numb er of minimum-weight co de words in a pro duct co de, Electronics Letters , 14 (1978) 642{643.
[6] M. Hivadi and M. Esmaeili, On the Stopping Distance and Stopping Redundancy of Pro duct Co des, IEICE Trans. , E91-A (2008) 2167{2173.
[7] W. W. Peterson and E. J. Weldon, Error Correcting Codes , 2nd Ed., MIT Press, 1972.
[8] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson and R. L. Urbanke, Finitelength analysis of low-density parity-check co des on the binary erasure channel, IEEE Trans. Inform. Theory , 48 1570{1579 (2002).
[9] R. M. Roth, Introduction to Coding Theory , Cambridge University Press, 2006.
[10] J. H. Web er and K. A. S. Ab del-Ghaffar, Results on Parity-Check Matrices with Optimal Stopping and/or Dead-End Set Enumerators, IEEE Trans. Inform. Theory , 54 (2008) 1368{1374 .
[11] S.-T. Xia and F.-W. Fu, Stopping Set Distributions of Some Linear Codes , Pro c. IEEE Information Theory Work-
shop, 2006.