[1] B. D. Achaya, Sp ectral criterion for the cycle balance networks, J. Graph Theor. , 4 (1980) 1{11.
[2] C. Adiga, R. Balakrishnan and W. So, The skew energy of a digraph, Linear Algebra Appl. , 432 (2010) 1825{1835.
[3] R. B. Bapat, D. Kalita and S. Pati, On weighted directed graphs, Linear Algebra Appl. , 436 (2012) 99{111.
[4] M. A. Bhat, Energy of weighted digraphs, Discrete Appl. Math. , 223 (2017) 1{14.
[5] M. A. Bhat and S. Pirzada, On equienergetic signed graphs, Discrete Appl. Math. , 189 (2015) 1{7.
[6] M. A. Bhat and S. Pirzada, Unicyclic signed graphs with minimal energy, Discrete Appl. Math. , 226 (2017) 32{39.
http://dx.doi.org/10.1016/j.dam.2017.03.015 .
[7] D. M. Cvetkovic, M. Do ob and H. Sachs, Spectra of Graphs , Academic Press, New York, 1980.
[8] K. C. Das and R. B. Bapat, A sharp upp er b ound on the sp ectral radius of weighted graphs, Discrete Math. , 308
(2008) 3180{3186.
[9] R. Faro o q, M. Khan and F. Ahmad, Extremal iota energy of bicyclic digraphs, Appl. Math. Comput. , 303 (2017)
24{33.
[10] R. Faro o q, S. Chand and M. Khan, On iota energy of bicyclic signed digraphs, Asian-Europ ean J. Math., http:
//dx.doi.org/10.1142/S1793557119500785 .
[11] R. Faro o q, M. Khan and S. Chand, On iota energy of signed digraphs, Linear Multilinear Algebra , http://dx.doi.
org/10.1080/03081087.2018.1431200 .
[12] F. R. Ganmatcher, The theory of Matrices, I, Translated from the Russian by K. A. Hirsch. Reprint of the 1959
translation, AMS Chelsea Publishing, Providence, RI, 1998.
[13] S. C. Gonga, Y. P. Houb, C. W. Wo o, G. H. Xua and X. L. Shenb, On the integral weighted oriented unicyclic
graphs with minimum skew energy, Linear Algebra Appl. , 439 (2013) 262{272.
[14] K. A. Germina, K. S. Hameed and T. Zaslavsky, On pro ducts and line graphs of signed graphs, their eigenvalues
and energy, Linear Algebra Appl. , 435 (2010) 2432{2450.
[15] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz , 103 (1978) 1{22.
[16] I. Gutman and J. Y. Shao, The energy change of weighted graphs, Linear Algebra Appl. , 435 (2011) 2425{2431.
[17] I. Gutman, B. Furtula, E. Zogic and E. Glogic, Resolvent energy of graphs, MATCH Commun. Math. Comput.
Chem. , 75 (2016) 279{290.
[18] M. Khan, R. Faro o q and A. A. Siddiqui, On the extremal energy of bicyclic digraphs, J. Math. Inequal. , 9 (2015)
799{810.
[19] M. Khan, R. Faro o q and J. Rada, Complex adjacency matrix and energy of digraphs, Linear Multilinear Algebra ,
65 (2017) 2170{2186.
[20] X. Li , Y. Shi and I. Gutman, Graph Energy , Springer-Verlag, New York, 2012.
[21] M. Mateljevic, V. Bozin and I. Gutman, Energy of a p olynomial and the Coulson integral formula, J. Math Chem. ,
48 (2010) 1062{1068.
[22] I. Pe ~na and J. Rada, Energy of digraphs, Linear Multilinear Algebra , 56 (2008) 565{579.
[23] S. Pirzada and M. A. Bhat, Energy of signed digraphs, Discrete Appl. Math. , 169 (2014) 195{205.