Refinements of the Bell and Stirling numbers

Document Type : Research Paper


University of Maryland


‎‎We introduce new refinements of the Bell‎, ‎factorial‎, ‎and unsigned Stirling numbers of the first and second kind that unite the derangement‎, ‎involution‎, ‎associated factorial‎, ‎associated Bell‎, ‎incomplete Stirling‎, ‎restricted factorial‎, ‎restricted Bell‎, ‎and $r$-derangement numbers (and probably more!)‎. ‎By combining methods from analytic combinatorics‎, ‎umbral calculus‎, ‎and probability theory‎, ‎we derive several recurrence relations and closed form expressions for these numbers‎. ‎By specializing our results to the classical case‎, ‎we recover explicit formulae for the Bell and Stirling numbers as sums over compositions‎.


Main Subjects

[1] T. Amdeb erhan and V. Moll, Involutions and their progenies, J. Comb. 6 (2015) 483{508.
[2] P. Blasiak and F. Fla jolet, Combinatorial mo dels of creation-annihilation, Sm. Lothar. Combin. , 65 (2010/12)
pp. 78.
[3] M. Bona and I. Mez}o, Real zero es and partitions without singleton blo cks, European. J. Combin. , 51 (2016)
[4] L. Comtet, Advanced combinatorics , The art of nite and in nite expansions, D. Reidel Publishing Co., Dordrecht,
[5] V. De Angelis and D. Marcello, Wilf 's conjecture, Amer. Math. Monthly , 123 (2016) 557{573.
[6] J. Engb ers, D. Galvin and C. Smyth, Restricted Stirling and Lah numb ers and their inverses, preprint (2016), .
[7] P. Fla jolet and R. Sedgewick, Analytic combinatorics , Cambridge University Press, Cambridge, 2009.
[8] I. M. Gessel, Applications of the classical umbral calculus, Algebra Universalis , 49 (2003) 397{434.
[9] T. Komatsu, K. Liptai and I. Mezo, Incomplete p oly-Bernoulli numb ers asso ciated with incomplete Stirling num-
b ers, Publ. Math. Debrecen , 88 (2016) 357{368.
[10] I. G. Macdonald, Symmetric functions and orthogonal polynomials , University Lecture Series, 12 American Math-ematical So ciety, Providence, RI, 1998.
[11] T. Mansour, Combinatorics of set partitions , Discrete Mathematics and its Applications, CRC Press, Bo ca Raton, FL, 2013
[12] F. L. Miksa, L. Moset and M. Wyman, Restricted partitions of nite sets, Canad. Math. Bul l. , 1 (1958) 87{96.
[13] V. H. Moll, J. L. Ramirez and D. Villamizar, Combinatorial and arithmetical prop erties of the restricted and
asso ciated Bell and factorial numb ers, preprint (2017), .
[14] P. Mongelli, Combinatorial interpretations of particular evaluations of complete and elementary symmetric func-
tions, Electron. J. Combin. , 19 (2012) pp. 23.
[15] J. P. Nolan, Stable distributions - models for heavy tailed data , In progress, Chapter 1 online at http://fs2. , Birkhauser, Boston MA, 2018.
[16] S. Roman, The umbral calculus , Academic Press, Inc., New York, 1984
[17] M. Z. Spivey, A generalized recurrence for Bell numb ers, J. Integer Seq. , 11 (2008) pp. 3.
[18] C. Vignat, A probabilistic approach to some results by Nieto and Truax, J. Math. Phys. , 51 (2010) pp. 9.
[19] C. Vignat and O. Lvque, Pro of of a conjecture by Gazeau et al. using the Gould-Hopp er p olynomials, J. Math.
Phys., 54 (2013) pp. 8.
[20] C. Vignat and T. Wakhare, Wo on's tree and sums over comp ositions, J. Integer Seq. , 21 (2018) Article 18.3.4.