We derive a new sharp lower bound on the $k$-conversion number of graphs of maximum degree $k+1$. This generalizes a result of W.~Staton [Induced forests in cubic graphs, Discrete Math.,49 (1984) 175--178], which established a lower bound on the $k$-conversion number of $(k+1)$-regular graphs.
Mynhardt, C., & Wodlinger, J. (2019). A lower bound on the $k$-conversion number of graphs of maximum degree $k+1$. Transactions on Combinatorics, 8(3), 1-12. doi: 10.22108/toc.2019.112258.1579
MLA
Christina Mynhardt; Jane Wodlinger. "A lower bound on the $k$-conversion number of graphs of maximum degree $k+1$". Transactions on Combinatorics, 8, 3, 2019, 1-12. doi: 10.22108/toc.2019.112258.1579
HARVARD
Mynhardt, C., Wodlinger, J. (2019). 'A lower bound on the $k$-conversion number of graphs of maximum degree $k+1$', Transactions on Combinatorics, 8(3), pp. 1-12. doi: 10.22108/toc.2019.112258.1579
VANCOUVER
Mynhardt, C., Wodlinger, J. A lower bound on the $k$-conversion number of graphs of maximum degree $k+1$. Transactions on Combinatorics, 2019; 8(3): 1-12. doi: 10.22108/toc.2019.112258.1579