For a simple connected graph $G$ of order $n$ and size $m$, the Laplacian energy of $G$ is defined as $LE(G)=\sum_{i=1}^n|\mu_i-\frac{2m}{n}|$ where $\mu_1, \mu_2,\ldots,\mu_{n-1}, \mu_{n}$ are the Laplacian eigenvalues of $G$ satisfying $\mu_1\ge \mu_2\ge\cdots \ge \mu_{n-1}> \mu_{n}=0$. In this note, some new lower bounds on the graph invariant $LE(G)$ are derived. The obtained results are compared with some already known lower bounds of $LE(G)$.
Milovanovic, I. Z. , Matejic, M. , Milosevic, P. , Milovanovic, E. I. and Ali, A. (2019). A note on some lower bounds of the Laplacian energy of a graph. Transactions on Combinatorics, 8(2), 13-19. doi: 10.22108/toc.2019.115269.1616
MLA
Milovanovic, I. Z., , Matejic, M. , , Milosevic, P. , , Milovanovic, E. I., and Ali, A. . "A note on some lower bounds of the Laplacian energy of a graph", Transactions on Combinatorics, 8, 2, 2019, 13-19. doi: 10.22108/toc.2019.115269.1616
HARVARD
Milovanovic, I. Z., Matejic, M., Milosevic, P., Milovanovic, E. I., Ali, A. (2019). 'A note on some lower bounds of the Laplacian energy of a graph', Transactions on Combinatorics, 8(2), pp. 13-19. doi: 10.22108/toc.2019.115269.1616
CHICAGO
I. Z. Milovanovic , M. Matejic , P. Milosevic , E. I. Milovanovic and A. Ali, "A note on some lower bounds of the Laplacian energy of a graph," Transactions on Combinatorics, 8 2 (2019): 13-19, doi: 10.22108/toc.2019.115269.1616
VANCOUVER
Milovanovic, I. Z., Matejic, M., Milosevic, P., Milovanovic, E. I., Ali, A. A note on some lower bounds of the Laplacian energy of a graph. Transactions on Combinatorics, 2019; 8(2): 13-19. doi: 10.22108/toc.2019.115269.1616