M. Aouchiche and P. Hansen (2010). On a conjecture about
the Szeged index. European J. Combin.. 31, 1662-1666 M. Arezoomand and B. Taeri (2010). Applications of
generalized hierarchical product of graphs in computing
the Szeged index of chemical graphs. MATCH Commun. Math.
Comput. Chem.. 64, 591-602 J. A. Bondy and U. S. R. Murty (2008). Graph Theory. Springer, Berlin. A. Dobrynin, R. Entringer and I. Gutman (2001). Wiener
index of trees: theory and applications. Acta Appl.
Math.. 66, 211-249 A. Dolati, I. Motevalian and A. Ehyaee (2010). Szeged
index, edge Szeged index, and semi--star trees. Discrete Appl. Math.. 158, 876-881 R. C. Entringer (1997). Distance in graphs: Trees. J. Combin. Math. Combin. Comput.. 24, 65-84 I. Gutman (1994). A formula for the Wiener number of
trees and its extension to graphs containing cycles. Graph Theory Notes N. Y.. 27, 9-15 I. Gutman and A. A. Dobrynin (1998). The Szeged index --
a success story. Graph Theory Notes N. Y.. 34, 37-44 I. Gutman and B. Furtula (Eds.) (2012). Distance in Molecular Graphs -- Theory. Univ. Kragujevac, Kragujevac. I. Gutman and B. Furtula (Eds.) (2012). Distance in
Molecular Graphs -- Applications\/. Univ. Kragujevac,
Kragujevac. I. Gutman and O. E. Polansky (1986). Mathematical Concepts
in Organic Chemistry. Springer, Berlin. P. Hansen (2010). Computers and conjectures in chemical
graph theory. Plenanry talk at the International Conference
on Mathematical Chemistry, August 4-7, Xiamen, China. H. Hua and S. Zhang (2011). A unified approach to extremal
trees with respect to geometric--arithmetic, Szeged,
and edge Szeged indices. MATCH Commun. Math. Comput.
Chem.. 65, 691-704 A. Ili\'c (2010). Note on PI and Szeged indices. Math. Comput. Modelling. 52, 1570-1576 X. Li, X. Yang, G. Wang and R. Hu (2012). The vertex PI and
Szeged indices of chain graphs. MATCH Commun. Math.
Comput. Chem.. 68, 349-356 M. J. Nadjafi--Arani, H. Khodashenas and A. R.
Ashrafi (2011). On the differences between Szeged and Wiener
indices of graphs. Discrete Math.. 311, 2233-2237 M. J. Nadjafi--Arani, H. Khodashenas and A. R.
Ashrafi (2012). Graphs whose Szeged and Wiener numbers differ
by 4 and 5. Math. Comput. Modelling. 55, 1644-1648 T. Pisanski and M. Randi\'c (2010). Use of the Szeged index and
the revised Szeged index for meauring network bipartivity. Discrete Appl. Math.. 158, 1936-1944 S. Simi\'c, I. Gutman and V. Balti\'c (2000). Some
graphs with extremal Szeged index. Math. Slovaca. 50, 1-15 H. Wiener (1947). Structural determination of paraffin boiling
points. J. Am. Chem. Soc.. 69, 17-20 B. Zhou, X. Cai and Z. Du (2010). On Szeged indices of
unicyclic graphs. MATCH Commun. Math. Comput. Chem.. 63, 113-132