Some inequalities involving the distance signless Laplacian eigenvalues of graphs

Document Type : Research Paper

Authors

1 Faculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box: 316-3619995161, Shahrood, Iran

2 Department of Mathematics, University of Hormozgan, P. O. Box 3995, Bandar Abbas, Iran

3 Department of Mathematics, University of Kashmir, Srinagar, India

4 Department of Computer and Information Sciences, Northumbria University, Newcastle, UK

Abstract

‎Given a simple graph $G$‎, ‎the distance signlesss Laplacian‎ ‎$D^{Q}(G)=Tr(G)+D(G)$ is the sum of vertex transmissions matrix‎ ‎$Tr(G)$ and distance matrix $D(G)$‎. ‎In this paper‎, ‎thanks to the‎ ‎symmetry of $D^{Q}(G)$‎, ‎we obtain novel sharp bounds on the distance‎ ‎signless Laplacian eigenvalues of $G$‎, ‎and in particular the‎ ‎distance signless Laplacian spectral radius‎. ‎The bounds are‎ ‎expressed through graph diameter‎, ‎vertex covering number‎, ‎edge‎ ‎covering number‎, ‎clique number‎, ‎independence number‎, ‎domination‎ ‎number as well as extremal transmission degrees‎. ‎The graphs‎ ‎achieving the corresponding bounds are delineated‎. ‎In addition‎, ‎we‎ ‎investigate the distance signless Laplacian spectrum induced by‎ ‎Indu-Bala product‎, ‎Cartesian product as well as extended double‎ ‎cover graph‎.

Keywords

Main Subjects


[1] A. Alhevaz, M. Baghipur, H. A. Ganie and S. Pirzada, Brouwer type conjecture for the eigenvalues of distance
signless Laplacian matrix of a graph, Linear and Multilinear Algebra, (2019), https://doi.org/10.1080/03081087.
2019.1679074.
[2] A. Alhevaz, M. Baghipur and E. Hashemi, Further results on the distance signless Laplacian spectrum of graphs,
Asian-Eur. J. Math., 11 (2018) 15 pp.
[3] A. Alhevaz, M. Baghipur, E. Hashemi and H. S. Ramane, On the distance signless Laplacian spectrum of graphs,
Bull. Malays. Math. Sci. Soc., 42 (2019) 2603–2621.
[4] A. Alhevaz, M. Baghipur and S. Paul, On the distance signless Laplacian spectral radius and the distance signless
Laplacian energy of graphs, Discrete Math. Algorithms Appl., 10 (2018) 19 pp.
[5] A. Alhevaz, M. Baghipur, S. Pirzada and Y. Shang, Some bounds on distance signless Laplacian energy-like invariant
of graphs, submitted.
[6] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey, Linear Algebra Appl., 458 (2014) 301–386.
[7] M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl., 439 (2013)
21–33.
[8] M. Aouchiche and P. Hansen, On the distance signless Laplacian of a graph, Linear Multilinear Algebra, 64 (2016)
1113–1123.
[9] M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak Math.
J., 64 (2014) 751–761.
[10] M. Aouchiche and P. Hansen, Distance Laplacian eigenvalues and chromatic number in graphs, Filomat, 31 (2017)
2545–2555.
[11] M. Aouchiche and P. Hansen, Cospectrality of graphs with respect to distance matrices, Appl. Math. Comput., 325
(2018) 309–321.
[12] N. Alon, Eigenvalues and expanders, Combinatorica, 6 (1986) 83–96.
[13] F. Atik and P. Panigrahi, Graphs with few distinct distance eigenvalues irrespective of the diameters, Electron. J.
Linear Algebra, 29 (2015) 194–205.
[14] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathe-
matics, 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
[15] A. Brouwer and W. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012.
[16] D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs. Theory and application, Pure and Applied Mathematics,
87, Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, New York-London, 1980, 368 pp.
[17] Z. Chen, Spectra of extended double cover graphs, Czechoslovak Math. J., 54 (2004) 1077–1082.
[18] J. B. Diaz and F. T. Metcalf, Complementary inequalities I: Inequalities complementary to Cauchy’s inequality for
sums of real number, J. Math. Anal. Appl., (1964) 59–74.
[19] P. J. Davis, Circulant matrices, A Wiley-Interscience Publication, Pure and Applied Mathematics, John Wiley &
Sons, New York-Chichester-Brisbane, 1979.
[20] X. Duan and B. Zhou, Sharp bounds on the spectral radius of a non-negative matrix, Linear Algebra Appl., 439
(2013) 2961–2970.
21] E. Fritscher and V. Trevisan, Exploring symmetries to decompose matrices and graphs preserving the spectrum,
SIAM J. Matrix Anal. Appl., 37 (2016) 260–289.
[22] W. Hong and L. You, Some sharp bounds on the distance signless Laplacian spectral radius of graphs, (2013) 9 pp.
[23] G. Indulal and R. Balakrishnan, Distance spectrum of Indu-Bala product of graphs, AKCE Int. J. Graphs Comb.,
13 (2016) 230–234.
[24] G. Indulal, TDistance spectrum of graph compositions, Ars Math. Contemp., 2 (2009) 93–100.
[25] D. Li, G. Wang and J. Meng, On the distance signless Laplacian spectral radius of graphs and digraphs, Electron.
J. Linear Algebra, 32 (2017) 438–446.
[26] H. Minć, Nonnegative matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization, A Wiley-
Interscience Publication, John Wiley & Sons, Inc., New York, 1988.
[27] R. Xing, B. Zhou and J. Li, On the distance signless Laplacian spectral radius of graphs, Linear Multilinear Algebra,
62 (2014) 1377–1387.
[28] R. Xing and B. Zhou, On the distance and distance signless Laplacian spectral radii of bicyclic graphs, Linear
Algebra Appl., 439 (2013) 3955–3963.