# Some remarks on the sum of powers of the degrees of graphs

Document Type : Research Paper

Authors

Faculty of Electronic Engineering, University of Niˇ s, P.O.73, Niˇ s, Serbia

Abstract

‎Let $G=(V,E)$ be a simple graph with $n\ge 3$ vertices‎, ‎$m$ edges‎ ‎and vertex degree sequence $\Delta=d_1 \ge d_2 \ge \cdots \ge‎ ‎d_n=\delta>0$‎. ‎Denote by $S=\{1, 2,\ldots,n\}$ an index set and by‎ ‎$J=\{I=(r_1, r_2,\ldots,r_k)‎, ‎| ‎,1\le r_1<r_2<\cdots<r_k\le‎ ‎n\}$ a set of all subsets of $S$ of cardinality $k$‎, ‎$1\le k\le‎ ‎n-1$‎. ‎In addition‎, ‎denote by‎ $d_{I}=d_{r_1}+d_{r_2}+\cdots+d_{r_k}$‎, ‎$1\le k\le n-1$‎, ‎$1\le‎ ‎r_1<r_2<\cdots<r_k\le n-1$‎, ‎the sum of $k$ arbitrary vertex‎ ‎degrees‎, ‎where $\Delta_{I}=d_{1}+d_{2}+\cdots+d_{k}$ and‎ ‎$\delta_{I}=d_{n-k+1}+d_{n-k+2}+\cdots+d_{n}$‎. ‎We consider the following graph invariant‎ ‎$S_{\alpha,k}(G)=\sum_{I\in J}d_I^{\alpha}$‎, ‎where $\alpha$ is an‎ ‎arbitrary real number‎, ‎and establish its bounds‎. ‎A number of known bounds for various topological indices are obtained as special cases‎.

Keywords

Main Subjects

#### References

[1] A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: extremal results and
bounds, MATCH Commun. Math. Comput. Chem., 80 (2018) 5–84.
[2] S. M. Cioaba, Sum of powers of the degrees of a graph, Discr. Math., 306 (2006) 1959–1964.
[3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discr. Math., 285 (2004) 57–66.
[4] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London Math. Soc., 9 (1977) 203–208.
[5] S. Fajtlowicz, On conjectures of Graﬃti-II, Congr. Numer., 60 (1987) 187–197.
[6] G. H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011)
79–84.
[7] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015) 1184–1190.
[8] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocar-
bons, Chem. Phys. Lett., 17 (1972) 535–538.
[9] S. Hosamani and B. Basavanagoud, New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput.
Chem., 74 (2015) 97–101.
[10] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth–order general
Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425–434.
[11] A. Ilić, M. Ilić and B. Liu, On the upper bounds for the first Zagreb index, Kragujevac J. Math., 35 (2011) 173–182.
[12] A. Ilić and B. Zhou, On reformulated Zagreb indices, Discr. Appl. Math., 160 (2012) 204–209.
[13] A. Ilić and D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem., 62 (2009)
681–687.
[14] J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30 (1906)
175–193.
[15] X. Li and J. Zheng, A unified approach to the extremal trees for diﬀerent indices, MATCH Commun. Math. Comput.
Chem., 54 (2005) 195–208.
[16] J. Li, W. C. Shiu and A. Chang, On the Laplacian Estrada index of a graph, Appl. Anal. Discr. Math., 3 (2009)
147–156.
[17] M. Liu and B. Liu, New sharp upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem.,
62 (2009) 689–698.
[18] A. Miličević and S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta, 77 (2004) 97–101.
[19] E. I. Milovanović, I. Ž. Milovanović, E. Č, Dolićanin and E. Glogić, A note on the first reformulated Zagreb index,
Appl. Math. Comput., 273 (2015) 16–20.
[20] I. Ž. Milovanović, V. M. Ćirić, I. Z. Milentijević and E. I. Milovanović, On some spectral, vertex and edge degree–
based graph invariants, MATCH Commun. Math. Comput. Chem., 77 (2017) 177–188.
[21] P. Milošević, I. Milovanović, E. Milovanović and M. Matejić, Some inequalities for general zeroth-order Randić
index, Filomat, 33 (2019) 5249–5258.
[22] D. S. Mitrinović and P. M. Vasić, Analytic inequalities, Springer Verlag, Berlin-Heidelberg-New York, 1970.
[23] J. Radon, Über die absolut additiven Mengenfunktionen, Sitzungsber, 122 (1913) 1295–1438.
[24] G. Tian, T. Huang and S. Cui, Bounds on the algebraic connectivity of graphs, Adv. Math., 41 (2012) 217–224.

### History

• Receive Date: 04 May 2020
• Revise Date: 15 September 2020
• Accept Date: 16 September 2020
• Published Online: 01 March 2021