A note on the automorphism group of the Hamming graph

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran

Abstract

Let $m>1$ be an integer and $\Omega$ be an $m$-set‎. ‎The Hamming graph $H(n,m)$ has $\Omega ^{n}$ as its vertex-set‎, ‎with two vertices are adjacent if and only if they differ in exactly one coordinate‎. ‎In this paper‎, ‎we provide a new proof on the automorphism group of the Hamming graph $H(n,m)$‎. ‎Although our result is not new (CE Praeger‎, ‎C Schneider‎, ‎Permutation groups and Cartesian decompositions‎, ‎Cambridge University Press‎, ‎2018)‎, ‎we believe that our proof is shorter and more elementary than the known proofs for determining the automorphism group of Hamming graph‎.

Keywords

Main Subjects


[1] N. Biggs, Algebraic Graph Theory, (Second edition), Cambridge Mathematical Library, Cambridge University Press,
1993.
[2] R. A. Bailey, P. J. Cameron, C. E. Praeger and C. Schneider, The geometry of diagonal groups, Arxive: 2007.10726v1,
(2021).
[3] J. A. Bondy and U. S. R. Murty, Graph Theory, New York, Springer, 2008.
[4] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, 18, Springer-Verlag, Berlin, 1989.
[5] P. J. Cameron, Automorphisms of graphs, Topics in Algebraic Graph Theory, Cambridge Mathematical Library,
Cambridge University Press, 2005.
[6] J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, New York, Springer-Verlag,
1996.
[7] C. Godsil and G. Royle, Algebraic Graph Theory, New York, Springer-Verlag, 2001.
[8] G. A. Jones, Automorphisms and regular embeddings of merged Johnson graphs, European J. Combin., 26 (2005)
417–435.
[9] L. Lu and Q. Huang, Automorphisms and Isomorphisms of Enhanced Hypercubes, Filomat, 34 (2020) 2805–2812.
[10] S. M. Mirafzal, On the symmetries of some classes of recursive circulant graphs, Trans. Comb., 3 (2014) 1–6.
[11] S. M. Mirafzal, On the automorphism groups of regular hyperstars and folded hyperstars, Ars. Comb., 123 (2015)
75–86.
[12] S. M. Mirafzal, Some other algebraic properties of folded hypercubes, Ars. Comb., 124 (2016) 153–159.
[13] S. M. Mirafzal, A note on the automorphism groups of Johnson graphs, Ars Combin., 154 (2021) 245–255.
[14] S. M. Mirafzal, More odd graph theory from another point of view, Discrete Math., 341 (2018) 217–220.
[15] S. M. Mirafzal and M. Ziaee, Some algebraic aspects of enhanced Johnson graphs, Acta Math. Univ. Comenianae,
88 (2019) 257–266.
[16] S. M. Mirafzal, The automorphism group of the bipartite Kneser graph, Proc. Indian Acad. Sci. Math. Sci., 129
no. 3 (2019) 8 pp.
[17] S. M. Mirafzal, Cayley properties of the line graphs induced by consecutive layers of the hypercube, Bull. Malays.
Math. Sci. Soc., 44 (2021) no. 3 1309–1326.
[18] S. M. Mirafzal, On the automorphism groups of connected bipartite irreducible graphs, Proc. Indian Acad. Sci.
Math. Sci., 130 (2020) no. 1 15 pp.
[19] S. M. Mirafzal, On the distance-transitivity of the square graph of the hypercube, arXiv: 2101.01615v2 (2021).
[20] C. E. Praeger and C. Schneider, Permutation groups and Cartesian decompositions, Cambridge University Press,
2018.
[21] J. X. Zhou, The automorphism group of the alternating group graph, Appl. Math. Lett., 24 (2011) 229–231.
  • Receive Date: 29 January 2021
  • Revise Date: 16 February 2021
  • Accept Date: 20 February 2021
  • Published Online: 01 June 2021