[1] A. Alhashim, W. J. Desormeaux and T. W. Haynes, Roman domination in complementary prisms, Australas. J.
Combin., 68 (2017) 218–228.
[2] B. Borovi´canin and B. Furtula, On extremal Zagreb indices of trees with given domination number, Appl. Math.
Comput., 279 (2016) 208–218.
[3] B. Borovi´canin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput.
Chem., 78 (2017) 17–100.
[4] D. A. Mojdeh, A. Parsian and I. Masoumi, Strong Roman domination number in complementary prism graphs,
Turk. J. Math. Comput. Sci., 11 (2019) 40–47.
[5] D. A. Mojdeh, M. Habibi, L. Badakdshian and Y. S. Rao, Zagreb indices of trees, unicyclic and bicyclic graphs with
given (total) domination, IEEE Access, 7 (2019) 94143–94149.
[6] D. B. West, Introduction to Graph Theory, 2nd Edition, Prentice Hall, NJ, 2001.
[7] D. Stevanovi´c, Mathematical properties of Zagreb indices, Akademska Misan, Belgrade (in Serbian), 2014.
[8] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete
Maths., 278 (2004) 11–22.
[9] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks, 10 (1980) 211–219.
[10] I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50
(2004) 83–92.
[11] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals. Total ϕ- electron energy of alternant hydrocarbons, Chem. Phsy. Lett., 17 (1972) 535–538.
http://dx.doi.org/10.22108/TOC.2022.128323.1848
10 Trans. Comb. 12 no. 1 (2023) 1-10 A. A. S. Ahmad Jamri, R. Hasni, M. K. Jamil and D. A. Mojdeh
[12] J. Amjadi, R. Khoeilar, M. Chellali and Z. Shao’, On the Roman domination subdivision number of a graph, J.
Comb. Optim., 40 (2020) 501–511.
[13] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett., 24 (2011) 1026–1030.
[14] M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory, 22 (2002) 325–334.
[15] O. Favaron, H. Karami, R. Khoeilar and S. M. Sheikholeslami, On the Roman domination number of a graph,
Discrete Math., 309 (2009) 3447–3451.
[16] P. Dankelmann, Average distance and domination number, Discrete Appl. Math., 80 (1997) 21–35.
[17] R. Todeschini and V. Consonni, Handbook of molecular descriptors, Wiley-VCH, Weinheim, 2000.
[18] S. Bermudo, J. E. N´apoles and J. Rada, Extremal trees for the Randi´c index with given domination number, Appl.
Math. Comput., 375 (2020).
[19] S. Nikoli´c, G. Kova´cevi´c, A. Mili´cevi´c and N. Trinajsti´c, The Zagreb indices 30 years after, Croat. Chem. Acta, 76
(2003) 113–124.
[20] T. Dehghan-Zadeh, H. Hua, A. R. Ashrafi and N. Habibi, Extremal tricyclic graphs with respect to the first and
second Zagreb indices, Note Mat., 33 (2013) 107–121.
[21] W. G. Yuan and X. D. Zhang, The second Zagreb indices of graphs with given degree sequences, Discrete Appl.
Math., 185 (2015) 230–238.
[22] Z. Du, A. A. S. Ahmad Jamri, R. Hasni and D. A. Mojdeh, Maximal first Zagreb index of trees with given Roman
domination number, AIMS Maths., accepted for publication.
[23] Z. Yan, H. Liu and H. Liu, Sharp bounds for the second Zagreb index of unicyclic graphs, J. Math. Chem., 42
(2007) 565–574.