The Mostar and Wiener index of alternate Lucas cubes

Document Type : Research Paper

Authors

1 Department of Computer Science, University of California Santa Barbara, CA 93106, USA

2 Department of Mathematics and Science Education, Hacettepe University, 06800, Ankara, Turkey

3 Department of Mathematics, TOBB University of Economics and Technology, 06560, Ankara, Turkey

Abstract

The Wiener index and the Mostar index quantify two distance related properties of connected graphs: the Wiener index is the sum of the distances over all pairs of vertices and the Mostar index is a measure of how far the graph is from being distance-balanced. These two measures have been considered for a number of interesting families of graphs. In this paper, we determine the Wiener index and the Mostar index of alternate Lucas cubes. Alternate Lucas cubes form a family of interconnection networks whose recursive construction mimics the construction of the well-known Fibonacci cubes.

Keywords

Main Subjects


[1] M. O. Albertson, The irregularity of a graph, Ars Combin., 46 (1997) 219–225.
[2] A. Ali and T. Doˇsli´c, Mostar index: Results and perspectives, Applied Mathematics and Computation, 404 (2021)
126–245.
[3] Y. Alizadeh, E. Deutsch and S. Klavˇzar, On the irregularity of π-permutation graphs, Fibonacci cubes, and trees,
Bull. Malays. Math. Sci. Soc., 43 (2020) 4443–4456.
[4] Y. Alizadeh, K. Xu and S. Klavˇzar, On the Mostar index of trees and product graphs, Filomat, 35 (2021) 4637–4643.
[5] J. L. Brown, Unique representation of integers as sums of distinct Lucas numbers, Fibonacci Quart., 7 (1969)
243–252.
[6] T. Doˇsli´c, I. Martinjak, R. Skrekovski, S.Tipuri´c Spuˇzevi´c and I. Zubac, Mostar index, ˇ J. Math. Chem., 56 (2018)
2995–3013.
[7] O. E˘gecio˘glu, E. Saygı and Z. Saygı, The irregularity polynomials of Fibonacci and Lucas cubes, ¨ Bull. Malays. Math.
Sci. Soc., 44 (2021) 753–765.
[8] O. E˘gecio˘glu, E. Saygı and Z. Saygı, The Mostar index of Fibonacci and Lucas cubes, ¨ Bull. Malays. Math. Sci. Soc.,
44 (2021) 3677–3687.
[9] O. E˘gecio˘glu, E. Saygı and Z. Saygı, Alternate Lucas Cubes, ¨ Internat. J. Found. Comput. Sci., 32 (2021) 871–899.
[10] F. Gao, K. Xu and T. Doˇsli´c, On the difference of Mostar index and irregularity of graphs, Bull. Malays. Math. Sci.
Soc., 44 (2021) 905–926.
[11] W.-J. Hsu, Fibonacci cubes–a new interconnection technology, IEEE Trans. Parallel Distrib. Syst., 4 (1993) 3–12.
[12] J. Jerebic, S. Klavˇzar and D. F. Rall, Distance-balanced graphs, Ann. Comb., 12 (2008) 71–79.
[13] S. Klavˇzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25 (2013) 505–522.
[14] S. Klavˇzar and M. Mollard, Wiener index and Hosoya polynomial of Fibonacci and Lucas cubes, MATCH Commun.
Math. Comput. Chem., 68 (2012) 311–324.
[15] E. Munarini, C. P. Cippo and N. Zagaglia Salvi, On the Lucas cubes, Fibonacci Quart., 39 (2001) 12–21.
[16] OEIS Foundation Inc. (2021), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A215602