Generalized barred preferential arrangements

Document Type : Research Paper

Authors

1 Departamento de Métodos Estadı́sticos, Facultad de Ciencias, Universidad Zaragoza, C. de Pedro Cerbuna, 12, 50009, Zaragoza, Spain

2 Department of Hydraulic Engineering, Faculty of Water Sciences, H-6500, Bajcsy-Zsilinszky utca 12–14, University of Public Service Baja, Hungary

3 Department of Mathematics, Rhodes University, Grahamstown, 6139, South Africa

4 Department of Mathematical Sciences, Sol Plaatje University, Kimberley, 8301, South Africa

Abstract

We investigate a generalization of Fubini numbers. We present the combinatorial interpretation as barred preferential arrangements with some additional conditions on the blocks. We provide a proof for a generalization of Nelsen's Theorem. We consider these numbers from a probabilistic view point and demonstrate how they can be written in terms of the expectation of random descending factorial involving the negative binomial process.

Keywords

Main Subjects


[1] J. A. Adell, Differential calculus for linear operators represented by finite signed measures and applications, Acta
Math. Hungar., 138 no. 1-2 (2013) 44–82.
[2] C. Ahlbach, J. Usatine and N. Pippenger, Barred Preferential Arrangements, Electron. J. Combin., 20 no. 2 (2013)
PP 55.
[3] H. Belbachir and Y. Djemmada, Congruence for geometric polynomials, Les Annales Rectis, 6 (2009) 37–44.
[4] K. N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Math. Math. Sci., 23 (2005)
38–49.
[5] K. N. Boyadzhiev and A. Dil, Geometric polynomials: properties and applications to series with zeta values, Anal.
Math., 42 no. 3 (2016) 203–224.
[6] R. B. Corcino, Some theorems on generalized Stirling numbers, Ars Combin., 60 (2001) 273–286.
[7] R. B. Corcino and C. B. Corcino, On generalized Bell polynomials, Discrete Dyn. Nat. Soc., (2011) 21 pp.
[8] C. B. Corcino, R. B. Corcino, B. Cekim, L. Kargin and S. Nkonkobe, A second type of higher order generalized
geometric polynomials and higher order generalized Euler polynomials, Quaest. Math., 45 (2020) 1–19.
[9] R. B. Corcino, L. C. Hsu and E. L. Tan, Combinatorial and statistical applications of generalized Stirling numbers,
J. Math. Res. Exposition, 21 no. 3 (2001) 337–343.
[10] M. E. Dasef and S. M. Kautz, Some sums of some importance, College Math. J., 28 (1997) 52–55.
[11] L. Euler, Institutiones calculi differentialis cum ejus usu in analysi finitorum ac doctrina serierum, Impensis
academiae imperialis scientiarum Petropolitanae, (1755). Also, another edition, Ticini: in typographeo Petri Galeatii
superiorum permissu (1787). Available online at http://eulerarchive.maa.org//pages/E212.html
[12] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge University Press, 2009.
[13] D. Foata and D. Zeilberger, Graphical Major Indices, J. Comput. Appl. Math., 68 (1996) 79–101.
[14] O. A. Gross, Preferential arrangements, Amer. Math. Monthly, 69 no. 1 (1962) 4–8.
[15] M. Guan, W. Li, E. Wang, I. Gessel, T. Ferguson, C. Melolidakis, R. B. Nelsen and C. Ion, Elementary Problems:
E3059-E3063, Amer. Math. Monthly, 91 (1984) 580–581.
[16] L. C. Hsu and P. J. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math., 20 no. 3 (1998)
366–384.
[17] L. Kargin and B. Cekim, Higher order generalized geometric polynomials, Turkish J. Math., 42 no. 3 (2018) 887–903.
[18] E. Mendelson, Races with ties, Math. Mag., 55 no. 3 (1982) 170–175.
[19] M. Mihoubi and S. Taharbouchet, Identities and congruences involving the geometric polynomials, Miskolc
Math. Notes, 20 no. 1 (2019) 395–408.
[20] R. B. Nelsen, D. E. Knuth, J. C. Binz and G. Williams, E3062, Amer. Math. Monthly, 94 (1987) 376–377.
[21] R. B. Nelsen and H. Schmidt, Chains in power sets, Math. Mag., 64 no. 1 (1991) 23–31.
[22] S. Nkonkobe, B. B´enyi, R. B. Corcino and C. B. Corcino, A combinatorial analysis of higher order generalised
geometric polynomials: A generalisation of barred preferential arrangements, Discrete Math., 343 no. 3 (2020) 12
pp.
[23] S. Nkonkobe and V. Murali, A study of a family of generating functions of Nelsen Schmidt type and some identities
on restricted barred preferential arrangements, Discrete Math., 340 no. 5 (2017) 1122-1128.
[24] N. Pippenger, The hypercube of resistors, asymptotic expansions, and preferential arrangements, Math. Mag., 83
no. 5 (2010) 331–346.
[25] N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org
  • Receive Date: 12 August 2021
  • Revise Date: 17 January 2022
  • Accept Date: 11 February 2022
  • Published Online: 01 March 2023