On the spectral radius, energy and Estrada index of the Sombor matrix of graphs

Document Type : Research Paper

Authors

1 School of Mathematics and Statistics, Qinghai Normal University, 810008, Xining, P. R. China The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Qinghai Normal University, 810008, Xining, P. R. China

2 School of Mathematics, China University of Mining and Technology, 221116, Xuzhou, P. R. China

Abstract

Let $G$ be a simple undirected graph with vertex set $V(G)=\{v_1, v_2,\ldots,v_n\}$ and edge set $E(G)$. The Sombor matrix $\mathcal{S}(G)$ of a graph $G$ is defined so that its $(i,j)$-entry is equal to $\sqrt{d_i^2+d_j^2}$ if the vertices $v_i$ and $v_j$ are adjacent, and zero otherwise, where $d_i$ denotes the degree of vertex $v_i$ in $G$. In this paper, lower and upper bounds on the spectral radius, energy and Estrada index of the Sombor matrix of graphs are obtained, and the respective extremal graphs are characterized.

Keywords

Main Subjects


[1] L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg, 21 (1957) 63–77.
[2] R. Cruz, I. Gutman and J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021) 10 p.
[3] K. C. Das, A.S. Çevik, I. N. Cangul and Y. Shang, On Sombor Index, Symmetry, 13 (2021).
[4] H. Deng, Z. Tang and R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem., 121
(2021).
[5] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015) 1184–1190.
[6] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz, 103 (1978) 1–22.
[7] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on
molecular topology, J. Serb. Chem. Soc., 70 (2005) 441–456.
[8] I. Gutman, Comparative studies of graph energies, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.), 144 (2012)
1–17.
[9] I. Gutman, The energy of a graph: Old and new results, Algebraic Combinatorics and Applications, Springer, Berlin,
(2001) 196–211.
[10] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math.
Comput. Chem., 86 (2021) 11–16.
[11] I. Gutman, Some basic properties of Sombor indices, Open J. Discret. Appl. Math., 4 (2021) 1–3.
[12] C. Godsil, Algebraic Combinatorics, Chapman and Hall Mathematics, New York: Chapman and Hall. xv, (1993)
362 p.
[13] I. Gutman and O.E. Polansky, Mathatical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[14] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocar-
bons, Chem. Phys. Lett., 17 (1972) 535–538.
[15] W. H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 226-228 (1995) 593–616.
[16] Y. Hong, A bound on the spectral radius of graphs, Linear Algebra Appl., 108 (1988) 135–140.
[17] X. Li and Z. Wang, Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by
degree-based indices, Linear Algebra Appl., 620 (2021) 61–75.
[18] V. R. Kulli, Sombor indices of certain graph operators, Int. J. Engin. Sci. Res. Technol., 10 (2021) 127–134.
[19] H. Kober, On the arithmetic and geometric means and on Hölders inequality, Proc. Amer. Math. Soc., 9 (1958)
452–459.
[20] V. R. Kulli and I. Gutman, Computation of Sombor Indices of Certain Networks, Int. J. Appl. Chem., 8 (2021) 1–5.
[21] R. Liu and W. C. Shiu, General Randić matrix and general Randić incidence matrix, Discrete Appl. Math., 186
(2015) 168–175.
[22] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
[23] I. Milovanović, E. Milovanović and M. Matejić, On Some mathematical properties of Sombor indeces, Bull. Int.
Math. Virtual Inst., 11 (2021) 341–353.
[24] V. Nikiforov, Some new results in extremal graph theory, 392, Cambridge Univ. Press, Cambridge, 2011.
[25] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021) 445–457.
[26] T. Réti, T. Došlić and A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021) 11–18.
[27] D. Stevanović, Spectral Radius of Graphs, Academic Press, Amsterdam, 2015.
[28] M. Taita and J. Tobin, Three conjectures in extremal spectral graph theory, J. Comb. Theory, Ser. B, 126 (2017)
137–161.
[29] D. Vukičević and M. Gašperov, Bond additive modelling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010) 261–273.
[30] Z. Wang, Y. Mao, Y. Li and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl.
Math. Comput., 68 (2022) 1–17.
[31] B. Xu, S. Li, R. Yu and Q. Zhao, On the spectral radius and energy of the weighted adjacency matrix of a graph,
Appl. Math. Comput., 340 (2019) 156–163.
[32] B. Zhou, On the spectral radius of nonnegative matrices, Australas. J. Comb., 22 (2000) 301–306.
Volume 12, Issue 4 - Serial Number 4
December 2023
Pages 191-205
  • Receive Date: 08 March 2021
  • Revise Date: 03 September 2022
  • Accept Date: 07 September 2022
  • Published Online: 01 December 2023