Line graphs associated to annihilating-ideal graph attached to lattices of genus one

Document Type : Research Paper


Department of Mathematics, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran


Let $(L,\wedge,\vee)$ be a lattice with a least element $0$. The annihilating-ideal graph of $L$, denoted by $\mathbb{AG}(L)$, is a graph whose vertex-set is the set of all non-trivial ideals of $L$ and, for every two distinct vertices $I$ and $J$, the vertex $I$ is adjacent to $J$ if and only if $I\wedge J=\{0\}$. In this paper, we characterize all lattices $L$ whose the graph $\mathfrak{L}(\mathbb{AG}(L))$ is toroidal.


Main Subjects

[1] M. Afkhami, S. Bahrami, K. Khashyarmanesh and F. Shahsavar, The annihilating-ideal graph of a lattice, Georgian
Math. J., 23 (2016) 1–7.
[2] J. A. Bondy and U. S. R. Murty, Graph theory with applications, New York, NY: American Elsevier Publishing, (1976)
264 p.
[3] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Theory Ser. B, 24 (1978)
[4] H. J. Chiang-Hsieh, P. F. Lee and H. J. Wang, The embedding of line graphs associated to the zero-divisor graphs of
commutative rings, Israel J. Math., 180 (2010) 193–222.
[5] B. A. Davey and H. A. Priestley: Introduction to lattices and order, Cambridge University Press, (2002) 298 p.
[6] C. D. Godsil and G. Royle, Algebraic graph theory, Springer-Verlag, New York, (2001) 439 p.
[7] A. L. Hlavacek, 9-vertex irreducible graphs for the torus, PhD. thesis, University of Ohio State, 1997.
[8] K. Kuratowski, Sur le probléme des courbes gauches en topologie, Fund. Math., 15 (1930) 271–283.
[9] W. Massey, Algebraic Topology: An Introduction, Harcourt, Brace & World, New York, 1967.
[10] J. B. Nation, Notes on Lattice Theory, Cambridge studies in advanced mathematics, 60, Cambridge University Press,
Cambridge, 1998.
[11] A. Parsapour and Kh. Ahmad Javaheri, The embedding of annihilating-ideal graphs associated to lattices in the
projective plane, Bull. Malays. Math. Sci. Soc., 42 (2019) 1625–1638.
[12] A. Parsapour and Kh. Ahmad Javaheri, When a line graph associated to annihilating-ideal graph of a lattice is planar
or projective, Czech. Math. J., 68 (2018) 19–34.
[13] G. Ringel, Map Color Theorem, Springer-Verlag, New York/Heidelberg, 1974.
[14] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math., 54 (1932) 150–168.
[15] D. Zeps, Forbidden minors for projective plane are free-toroidal or non-toroidal, IUUK-CE-ITI series, 2009.