[1] O. Bodroža-Pantić, H. Kwong, R. Doroslovački and M. Pantić, Enumeration of Hamiltonian cycles on a thick grid cylinder—Part I: Non-contractible Hamiltonian cycles, Appl. Anal. Discrete Math., 13 (2019) 28–60.
[2] O. Bodroža-Pantić, H. Kwong, R. Doroslovački and M. Pantić, A limit conjecture on the number of Hamiltonian cycles on thin triangular grid cylinder graphs, Discuss. Math. Graph Theory, 38 (2018) 405–427.
[3] O. Bodroža-Pantić, H. Kwong, J.D̄okić, R. Doroslovački and M. Pantić, Enumeration of Hamiltonian cycles on a thick grid cylinder—Part II: Contractible Hamiltonian cycles, Appl. Anal. Discrete Math., 16 (2022) 246–287.
[4] O. Bodroža-Pantić, H. Kwong and M. Pantić, A conjecture on the number of Hamiltonian cycles on thin grid cylinder graphs, Discrete Math. Theor. Comput. Sci., 17 (2015) 219–240.
[5] O. Bodroža-Pantić, B. Pantić, I. Pantić and M. Bodroža Solarov, Enumeration of Hamiltonian cycles in some grid graphs, MATCH Commun. Math. Comput. Chem., 70 (2013) 181–204.
[6] O. Bodroža-Pantić and R. Tošić, On the number of 2-factors in rectangular lattice graphs, Publ. Inst. Math. (Beograd) (N.S.), 56 (1994) 23–33.
[7] R. A. Brualdi and D. M. Cvetković, A combinatorial approach to matrix theory and its applications, Discrete Mathe-matics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2009.
[8] D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs. Theory and application, Second edition, VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.
[9] J. D̄okić, O. Bodroža-Pantić and K. Doroslovački, A spanning union of cycles in rectangular grid graphs, thick grid cylinders and Moebius strips (with Appendix), arXiv:2109.12432[math.co] (2021) 1–26.
[10] J. D̄okić, K. Doroslovački and O. Bodroža-Pantić, The structure of the 2-factor transfer digraph common for rectangular, thick cylinder and Moebius strip grid graphs, Appl. Anal. Discrete Math., arXiv:2212.00317[math.co] (2022) 1–16.
[11] I. G. Enting and I. Jensen, Exact enumerations, Polygons, polyominoes and polycubes, , Lecture Notes in Phys., 775, Springer, Dordrecht, 2009 143–179.
[12] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[13] J. L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions, J. Phys. A: Math. Theor., 40 (2007) 14667–14678.
[14] T. C. Liang, K. Chakrabarty and R. Karri, Programmable daisychaining of microelectrodes to secure bioassay IP in MEDA biochips, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25 (2020) 1269–1282.
[15] A. M. Karavaev, Kodirovanie sostoyaniı̆ v metode matricy perenosa dlya podscheta gamil′ tonovyh ciklov na pryamougol′ nyh reshetkah, cilindrah i torah, Informacionnye Processy, 11 (2011) 476–499.
[16] A. Karavaev and S. Perepechko, Counting Hamiltonian cycles on triangular grid graphs, IV International Con-ference, SIMULATION-2012,
https://web.archive.org/web/20161015205252/http://flowproblem.ru/references, Kiev, 2012.
[17] A. Kloczkowski and R. L. Jernigan, Transfer matrix method for enumeration and generation of compact self-avoiding walks. I., Square lattices., J. Chem. Phys., 109 (1998) 5134–5146.
[18] E. S. Krasko, I. N. Labutin and A. V. Omelchenko, The enumeration of labeled and unlabeled Hamiltonian cycles in complete k-partite graphs, J. Math. Sci. (N.Y.), 255 (2021) 71–87.
[19] W. Kocay and D. L. Kreher, Discrete mathematics and its applications - graphs, algorithms, and optimization, Second Edition-CRC Press LLC-Chapman and Hall-CRC, 2017
[20] J. A. Montoya, On the counting complexity of mathematical nanosciences, MATCH Commun. Math. Comput. Chem., 86 (2021) 453–488.
[21] R. I. Nishat and S. Whitesides, Reconfiguring Hamiltonian cycles in L-shaped grid graphs, Graph-theoretic concepts in computer science, Lecture Notes in Comput. Sci., Springer, Cham, (2019) 325–337.
[22] V. H. Pettersson, Enumerating Hamiltonian cycles, Electron. J. Combin., 21 (2014) 1–15.
[23] R. P. Stanley, Enumerative Combinatorics, I, Cambridge University Press, Wadsworth, Monterey, 2002.
[24] N. J. A. Sloane, he on-line encyclopedia of integer sequences, (OEIS), https://oeis.org/A082758.
[25] A. Vegi Kalamar, T. Žerak, D. Bokal, Counting hamiltonian cycles in 2-tiled graphs, Mathematics, 9 (2021) 1–27.