On variable sum exdeg energy of graphs

Document Type : Research Paper

Authors

1 AIR University, Aerospace and Aviation Campus, Kamra, Pakistan

2 School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad Pakistan

Abstract

In this paper, we put forward the idea of variable sum exdeg energy of graphs. We study the algebraic properties of variable sum exdeg energy. Some properties related to spectral radius of variable sum exdeg matrix are determined. We determine some Nordhaus-Gaddum-type results for variable sum exdeg spectral radius and energy. Some classes of variable sum exdeg equienergetic graphs are also determined.

Keywords

Main Subjects


[1] M. A. Bhat and S. Pirzada, On equienergetic signed graphs, Discrete Appl. Math., 189 (2015) 1–7.
[2] S. B. Bozkurt, A. D. Güngör and I. Gutman, Randić spectral radius and Randić energy, MATCH Commun. Math.
Comput. Chem., 64 (2010) 32–334.
[3] S. B. Bozkurt, A. D. Güngör, I. Gutman, A. S. çevik, Randić matrix and Randić energy, MATCH Commun. Math.
Comput. Chem., 64 (2010) 239–250.
[4] D. Cao, Bounds on eigenvalues and chromatic numbers, Linear Algebra Appl., 270 (1998) 1–13.
[5] M. Cavers, S. Falat and S. Kirkland, On the normalized Laplacian energy and general Randić R−1 index of graphs,
Linear Algebra Appl., 433 (2010) 172–190.
[6] K. C. Das, I. Gutman and B. Furtula, On spectral radius and energy of extended adjacency matrix of graphs, Appl.
Math. Comput., 296 (2017) 116–123.
[7] K. C. Das, I. Gutman, I. Milovanović, E. Milovanović and B. Furtula, Degree based energies of graphs, Linear
Algebra Appl., 554 (2018) 185–204.
[8] E. Estrada, The ABC matrix, J. Math. Chem., 55 (2017) 1021–1033.
[9] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszentrum. Graz., 103 (1978) 1–22.
[10] I. Gutman, B. Furtula and (Eds.), Novel molecular structure descriptors- theory and applications, I-II, Univ. Kragu-
jevac, Kragujevac, 2010.
[11] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin 1986.
[12] I. Gutman, B. Furtula and S. B. Bozkurt, On Randić energy, Linear Algebra Appl., 422 (2014) 50–57.
[13] S. Hafeez and R. Farooq, Inverse sum indeg energy of graphs, IEEE Access, 7 (2019) 100860 –100866.
[14] S. Hafeez, R. Farooq, On generalized inverse sum indeg index and energy of graphs, AIMS Math., 5 (2020) 2388–2411.
[15] Y. Hong, Bounds of eigenvalues of graphs, Discret. Math., 123 (1993) 65–74.
[16] R. A. Horn and C. R. Johnson, Matrix Analysis, New York, Cambridge Univ. Press 1990.
[17] M. Khan, K. Khan and S. I. Ahmad, On Extremal p-Energy of Bicyclic Digraphs, Polycycl. Aromat. Compd., 42
(2021) 7100-7113.
[18] I. Milovanović, E. Milovanović and I. Gutman, Upper bounds for some graph energies, Appl. Math. Comput., 289
(2016) 435–443.
[19] L. Mirsky, The spread of a matrix, Mathematika., 3 (1956) 127–130.
[20] D. A. Morales, Bounds for the total π-electron energy, Int. J. Quantum Chem., 88 (2002) 317–330.
[21] K. N. Prakasha, P. S. K. Reddy and I. N. Cangul, Symmetric division deg energy of a graph, Turk. J. Anal. Number
Theory., 5 (2017) 202–209.
[22] N. J. Rad, A. Jahanbani and I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun.
Math. Comput. Chem., 79 (2018) 371–386.
[23] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog and I. Gutman, Equienergetic
graphs, Kragujevac J. Math., 26 (2004) 5–13.
[24] D. S. Ravankar, M. M. Patil and S. P. Hande, Note on the bounds for the degree sum energy of a graph, degree sum energy of a common neighborhood graph and terminal distance energy of a graph, Int. J. Math. Arch., 7 (2016)
34–37.
[25] H. Ren and F. Zheng, Double hexagonal chains with maximal energy, Int. J. Quantum Chem., 107 (2007) 1437–1445.
[26] J. M. Rodriguez and J. M. Sigarreta, Spectral properties of geometric-arithmetic index, Appl. Math. Comput., 277
(2016) 142–153.
[27] R. Todeschini and V. Consonni, Molecular descriptors for chemoinformatics, Wiley-VCH, Weinheim, (2009).
[28] D. Vukičevic̀, Bond additive modelling 4. QSPR and QSAR studies of the variable Adriatic indices, Croat. Chem.
Acta., 84 (2011), 87–91.
[29] D. Vukičevic̀, Bond additive modelling 5, Mathematical properties of the variable sum exdeg index, Croat. Chem.
Acta., 84 (2011) 93–101.
[30] Z. Yarahmadi and A. R. Ashrafi, The exdeg polynomial of some graph operations and applications in nanoscience, J. Comput. Theor. Nanosci., 12 (2015) 45–51.
[31] F. Zhang, Matrix Theory: Basic Results and Techniques, New York, Springer 1999.
[32] B. Zhou and N. Trinajstić, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs,
Acta Chim. Slov., 57 (2010) 518–523.
[33] Q. Zhu, Extremal k-uniform hypertrees on incidence energy, Int. J. Quantum Chem., 121 (2021).
  • Receive Date: 28 March 2022
  • Revise Date: 22 January 2023
  • Accept Date: 22 January 2023
  • Published Online: 01 March 2024