On the infinitary van der Waerden's Theorem

Document Type : Research Paper

Author

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

Abstract

We give a purely combinatorial proof for the infinitary van der Waerden's theorem.

Keywords

Main Subjects


[1] T. Brown and S. Mohsenipour, Two extensions of Hilbert’s cube lemma, Integers, 21A (2021) 9 pp.
[2] T. J. Carlson, Some unifying principles in Ramsey theory, Discrte Math., 68 (1988) 117–169.
[3] T. J. Carlson and S. G. Simpson, A dual form of Ramsey’s theorem, Adv. in Math., 53 (1984) 265–290.
[4] H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math., 49 (1979) 61–85.
[5] A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc., 106 (1963) 222–229.
[6] J. Justin and G. Pirillo, Shirshov’s Theorem and ω-Permutability of Semigroups, Adv. Math., 87 (1991) 151–159.
[7] M. Walters, Extensions of the polynomial Hales-Jewett theorem, Combinatorics, Probability and Computing, 16 (2007) 789–803.
Volume 13, Issue 4 - Serial Number 4
December 2024
Pages 319-325
  • Receive Date: 01 February 2023
  • Revise Date: 26 July 2023
  • Accept Date: 30 July 2023
  • Published Online: 01 December 2024