[1] B. Alizadeh, R. E. Burkard and U. Pferschy, Inverse 1-center location problems with edge length augmen-tation on trees, Computing, 86 (2009) 331–343.
[2] B. Alizadeh and R. E. Burkard, Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees, Networks, 58 (2011) 190–200.
[3] R. E. Burkard, C. Pleschiutschnig and J. Z. Zhang, Inverse median problems, Discrete Optim., 1 (2004) 23–39.
[4] R. E. Burkard, C. Pleschiutschnig and J. Z. Zhang, The inverse 1-median problem on a cycle, Discrete Optim., 5 (2008) 242–253.
[5] M. C. Cai, X. G. Yang and J. Zhang, The complexity analysis of the inverse center location problem, J. Global Optim., 15 (1999) 213–218.
[6] M. S. Daskin, Network and Discrete Location: Models, Algorithms and Applications, ohn Wiley & Sons, Inc., New York, 1995.
[7] H. A. Eiselt and V. Marianov, Foundations of location analysis, International Series in Operations Research and Management Science, Springer, 2011.
[8] J. Fathali and M. Zaferanieh, The balanced 2-median and 2-maxian problems on a tree, J. Comb. Optim., 45 (2023) 16 pp.
[9] M. Galavii, The inverse 1-median problem on a tree and on a path, Electron. Notes Discret. Math., 36 (2010) 1241–1248.
[10] A. J. Goldman, Optimal center location in simple networks, Transportation Sci., 5 (1971) 212–221.
[11] X. Guan and B. Zhang, Inverse 1-median problem on trees under weighted Hamming distance, J. Global Optim., 54 (2012) 75–82.
[12] S. L. Hakimi, Optimum locations of switching centers and the absolute centers and medians of a graph, Operations Research, 12 (1964) 450–459.
[13] M. Nazari and J. Fathali, Inverse and reverse 2-facility location problems with equality measures on a network, Iran. J. Math. Sci. Inform., 18 (2023) 211–225.
[14] K. T. Nguyen, Inverse 1-median problem on block graphs with variable vertex weights, J. Optim. Theory Appl., 168 (2016) 944–957.
[15] K. T. Nguyen, T. H. Nguyen, H. Nguyen-Thu and T. T. Le, Pham V. H., On some inverse 1-center location problems, Optimization, 68 (2019) 999–1015.
[16] K.T. Nguyen and A. R. Sepasian, The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance, J. Comb. Optim., 32 (2016) 872–884.
[17] S. Omidi and J. Fathali, Inverse single facility location problem on a tree with balancing on the distance of server to clients, J. Ind. Manag. Optim., 18 (2022) 1247–1259.
[18] S. Omidi, J. Fathali and M. Nazari, Inverse and reverse balanced facility location problems with variable edge lengths on trees, Opsearch, 57 (2020) 261–273.
[19] A. R. Sepasian and F. Rahbarnia, An O(nlogn) algorithm for the Inverse 1-median problem on trees with variable vertex weights and edge reductions, Optimization, 64 (2015) 595–602.
[20] A. Weber, Uber den Standort der Industrial, Tubingen Theory of Location of Industries, University of Chicago Press, (1909).