Relations between energy of graphs and wener, harary indices

Document Type : Research Paper


Department of Mathematics, American International University, Al Jahra, Kuwait


Harary and Wiener indices are distance-based topological index. In this paper, we study the relations of graph energy $\varepsilon(G)$ and its Harary index $\textup{H}(G)$ and Wiener index $\textup{W}(G)$. Moreover, for a given graph $G$ we study the lower bound of $\frac{\textup{H}(G)}{\varepsilon(G)}$ and $\frac{\textup{W}(G)}{\varepsilon(G)}$ in terms of number of vertices of $G$.


Main Subjects

[1] O. Arizmendi, J. F. Hidalgo and O. Juarez-Romero, Energy of a vertex, Lin. Algebra Appl., 557 (2018) 464–495.
[2] G. Arizmendi and O. Arizmendi, Energy of a graph and Randic index, Lin. Algebra Appl., 609 (2021) 332–338.
[3] O. Arizmendi, B. C. Luna-Olivera and M. Ramirez Ibanez, Coulson integral formula for the vertex energy of a graph, Lin. Algebra Appl., 580 (2019) 166–183.
[4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978) 1–22.
[5] O. Ivanciuc, T. S. Balaban and A. T. Balaban, Reciprocal distance matrix related local vertex invariants and topological indices, J. Math. Chem., 12 (1993) 309–318.
[6] R. Moghimipor, On the Wiener index of Cohen-Macaulay and very well-covered graphs, Australas. J. Combin., 81 (2021) 46–57.
[7] D. Plavsic, S. Nikolic, N. Trinajstic and Z. Mihalic, On the Harary index for the charcterization of chemical graphs, J. Math. Chem., 12 (1993) 235–250.
[8] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947) 17–20.
[9] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
Volume 13, Issue 3 - Serial Number 3
September 2024
Pages 279-286
  • Receive Date: 18 January 2022
  • Revise Date: 25 September 2023
  • Accept Date: 01 October 2023
  • Published Online: 01 September 2024