Minimal graphs with respect to the multiplicative version of some vertex-degree-based topological indices

Document Type : Research Paper


Department of Mathematics , Khansar Faculty, University of Isfahan, Isfahan, Iran



As a real-valued function, a graphical parameter is defined on the class of finite simple graphs, and remains invariant under graph isomorphism. In mathematical chemistry, vertex-degree-based topological indices are the graph parameters of the general form of $p_{\phi}(G)=\sum_{uv\in E(G)}\phi(d(u),d(v))$, where $\phi$ represents a real-valued symmetric function, and $d(u)$ shows the degree of $u\in V(G)$. In this paper, it is proved that if $\phi$ has certain conditions, then the graph among those with $n$ vertices and $m$ edges, whose difference between the maximum and minimum degrees is at most $1$, has the minimal value of $p_{\phi}$. Moreover, it is demonstrated that some well-known topological indices are able to satisfy these certain conditions, and the given indices can be treated in a unified manner.


Main Subjects

[1] A. Aashtab, S. Akbari, S. Madadinia, M. Noei and F. Salehi, On the graphs with minimum Sombor index, MATCH Commun. Math. Comput. Chem., 88 (2022) 553–559.
[2] A. Ali and D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math., 238 (2018) 32–40.
[3] M. Ascioglu and I. N. Cangul,Narumi-Katayama index of the subdivision graphs, Journal of Taibah University for Science, 12 no. 4 (2018) 401–408.
[4] A. R. Ashrafi, M. Eliasi, A. Ghalavand and O. Ori, Extremal tricyclic, tetracyclic, and pentacyclic graphs with respect to the Narumi-Katayama index, Acta Comment. Univ. Tartu. Math., 22 no. 2 (2019) 261–278.
[5] B. Borovićanin and B. Furtula, On extremal Zagreb indices of trees with given domination number, Appl. Math. Comput., 279 (2016) 208–218.
[6] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs: 1. The AutoGraphiX system, Discrete Math., 212 (2000) 29–44.
[7] R. Cruz and J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem. 59 (2021) 1098–1116.
[8] R. Diestel, Graph Theory, Springer, Berlin, 2016.
[9] M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68 (2012) 217–230.
[10] M. Eliasi and D. Vukicević, Comparing the multiplicative Zagreb indices, MATCH Commun. Math. Comput. Chem., 69 (2013) 765–773.
[11] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. , 53 (2015) 1184–1190.
[12] R. Gera, T. W. Haynes, S. T. Hedetniemi and M. A. Henning, An annotated glossary of graph theory parameters, with conjectures, Graph theory—favorite conjectures and open problems, Probl. Books in Math., Springer, Cham, 2018 177–281.
[13] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021) 11–16.
[14] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka, 18 (2011) 17–23.
[15] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535–538.
[16] I. Gutman and M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett., 25 (20125) 1435–1438.
[17] P. Hansen and D. Vukicević, Comparing Zagreb indices, Croat. Chem. Acta, 80 (2007) 165–168.
[18] S. Hayat, M. Arshad, H. Jamil, Proofs to some open problems on the maximum Sombor index of graphs, Computational and Applied Mathematics, Accepted, In press (2023).
[19] A. Ilić and D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem., 62 (2009) 681–687.
[20] D. J. Klein and V. R. Rosenfeld, The Narumi Katayama degree product index and the degree product polynomial, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010 79–90.
[21] H. Liu, Multiplicative Sombor index of graphs, Discrete Math. Lett., 9 (2022) 80–85.
[22] H. Liu, I. Gutman, L. You and Y. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem., 60 (2022) 771–798.
[23] M. Liu and B. Furtula, Minimum augmented Zagreb index of c-cyclic graphs, Discrete Appl. Math., 297 (2021) 32–38.
[24] B. Liu, On a conjecture about comparing Zagreb indices, Recent results in the Theory of Randic index, University of Kragujevac 205–209 2008.
[25] L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006) 933–957.
[26] H. Narumi and M. Katayama, Simple topological index. a newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ., 16 (1984) 209–214.
[27] R. Todeschini and V. Consonni,Handbook of molecular descriptors, WileyVCH, Weinheim, 2000.
[28] R. Todeschini and V. Consonni, Molecular descriptors for chemoinformatics, WileyVCH, Weinheim, 2009.
[29] D. Vukicević, Comparing variable Zagreb indices, MATCH Commun. Math. Comput. Chem., 57 (2007) 633–641.
[30] K. Xu, K.C. Das and S. Balachandran, Maximizing the Zagreb indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 641–654.
[31] A. Yousefi, A. Iranmanesh, A.A. Dobrynin and A. Tehranian, A multiplicative version of forgotten topological index, Mathematics Interdisciplinary Research, 4 (2019) 193–211.
[32] B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47 (2009) 210–218.

Articles in Press, Corrected Proof
Available Online from 05 May 2024
  • Receive Date: 28 October 2023
  • Revise Date: 08 April 2024
  • Accept Date: 24 April 2024
  • Published Online: 05 May 2024