[1] A. Ali and T. Došlić, Mostar index: Results and perspectives, Appl. Math. Comput., 404 (2021) #126245.
[2] L. Alex and G. Indulal, On a Conjecture on Edge Mostar index of bicyclic graphs, Iran. J. Math. Chem., 14 (2023) 97–108.
[3] L. Alex and G. Indulal, Inverse problem for Mostar index of chemical trees and unicyclic graphs, Palestine J. Math., Accepted.
[4] M. Arockiaraj, J. Clement and N. Tratnik, Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems, Int. J. Quantum Chem., 119 (2019) #e26043.
[5] Y. A. Ban, S. Bereg and N. H. Mustafa, A conjecture on Wiener indices in combinatorial chemistry, Algorithmica, 40 (2004) 99–117.
[6] D. Dimitrov and D. Stevanović, On the σt-irregularity and the inverse irregularity problem, Appl. Math. Comput., 441 (2023) #127709.
[7] T. Došlić, I. Martinjak, R. Škrekovski, S. Tipurić Spužević and I. Zubac, Mostar index, J. Math. Chem., 56 (2018) 2995–3013.
[8] Ö. Eğecioğlu, E. Sayg, and Z. Saygi, The Mostar and Wiener index of alternate Lucas cubes, Trans. Comb., 12 (2023) 37–46.
[9] J. Fink, B. Lužar and R. Škrekovski, Some remarks on inverse Wiener index problem, Discrete Appl. Math., 160 (2012) 1851–1858.
[10] A.Y. Güneş, M. Togan, M. Demirci and I.N, Cangul, Inverse problem for Albertson irregularity index, TWMS J. Appl. Engin. Math., 12 (2022) 662–669.
[11] I. Gutman and A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta, 81 (2008) 263–266.
[12] I. Gutman and O. Polansky, Mathematical Concepts in organic Chemistry, Springer, Berlin (1986).
[13] I. Gutman, M. Togan, A. Yurttas, A. S. Cevik and I. N. Cangul, Inverse problem for sigma index, MATCH Commun. Math. Comput. Chem., 79 (2018) 491–508.
[14] I. Gutman, Y. N. Yeh and J. C. Chen, On the sum of all distances in graphs, Tamkang J. Math., 25 (1994) 83–86.
[15] F. Hayat and B. Zhou, On cacti with large Mostar index, Filomat, 33 (2019) 4865–4873.
[16] F. Hayat and B. Zhou, On Mostar index of trees with parameters, Filomat, 33 (2019) 6453–6458.
[17] S. Huang, S. Li and M. Zhang, On the extremal Mostar indices of hexagonal chains, MATCH Commun. Math. Comput. Chem., 84 (2020) 249–271.
[18] M. Imran, S. Akhter and Z. Iqbal, Edge Mostar index of chemical structures and nanostructures using graph operations, Int. J. Quantum Chem., 120 (2020), #e26259
[19] J. V. Kureethara, A. Asok and I. N. Cangul, Inverse problem for the forgotten and the hyper Zagreb indices of trees, Commun. Comb. Optim., 7 (2022) 203–209.
[20] M. Lepović and I. Gutman, A collective property of trees and chemical trees, J. Chem. Inf. Comput. Sci., 38 (1998) 823–826.
[21] X. Li, Z. Li and L. Wang, The inverse problems for some topological indices in combinatorial chemistry, J. Comput. Biol., 10 (2003) 47–55.
[22] X. Li, Y. Mao and I. Gutman, Inverse problem on the Steiner Wiener index, Discuss. Math. Graph Theory, 38 (2018) 83–95.
[23] H. Liu, L. Song, Q. Xiao and Z. Tang, On edge Mostar index of graphs, Iran. J. Math. Chem., 11 (2020) 95–106.
[24] D. Maji, G. Ghorai, M. K. Mahmood and M. A. Alam, On the inverse problem for some topological indices, J. Math., 2021 (2021), #9411696.
[25] T. Pisanski and M. Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, Discrete Appl. Math., 158 (2010) 1936–1944.
[26] A. Tepeh, Extremal bicyclic graphs with respect to Mostar index, Appl. Math. Comput., 355 (2019) 319–324.
[27] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim (2009).
[28] S. Wagner, A class of trees and its Wiener index, Acta Appl. Math., 91 (2006) 119–132.
[29] S. Wagner, A note on the inverse problem for the Wiener index, MATCH Commun. Math. Comput. Chem., 64 (2010) 639–646.
[30] S. Wagner, H. Wang and G. Yu, Molecular graphs and the inverse Wiener index problem, Discrete Appl. Math., 157 (2009) 1544–1554.
[31] S. Wagner and H. Wang, Introduction to Chemical Graph Theory CRC Press, Boca Raton (2018).
[32] H. Wang and G. Yu, All but 49 numbers are Wiener indices of trees, Acta Appl. Math., 92 (2006) 15–20.
[33] A. Yurtas, M. Togan, V. Lokesha I. N. Cangul and I. Gutman, Inverse problem for Zagreb indices, J. Math. Chem., 57 (2019) 609–615.