On the inverse mostar index problem for molecular graphs

Document Type : Research Paper


1 Bishop Chulaparambil Memorial College, Kottayam

2 University of Kragujevac Kragujevac, Serbia



Mostar indices are recently proposed distance-based graph invariants, that already have been much investigated and found applications. In this paper, we investigate the inverse problem for Mostar indices of unicyclic and bicyclic molecular graphs. We prove that all positive integers other than 1, 2, 3, and 5 can be the Mostar index of some bicyclic molecular graph. In addition, we resolve the inverse edge Mostar index problem for molecular unicyclic and bicyclic graphs, and in doing so, establish the second and third smallest value of the edge Mostar index of unicyclic graphs.


Main Subjects

[1] A. Ali and T. Došlić, Mostar index: Results and perspectives, Appl. Math. Comput., 404 (2021) #126245.
[2] L. Alex and G. Indulal, On a Conjecture on Edge Mostar index of bicyclic graphs, Iran. J. Math. Chem., 14 (2023) 97–108.
[3] L. Alex and G. Indulal, Inverse problem for Mostar index of chemical trees and unicyclic graphs, Palestine J. Math., Accepted.
[4] M. Arockiaraj, J. Clement and N. Tratnik, Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems, Int. J. Quantum Chem., 119 (2019) #e26043.
[5] Y. A. Ban, S. Bereg and N. H. Mustafa, A conjecture on Wiener indices in combinatorial chemistry, Algorithmica, 40 (2004) 99–117.
[6] D. Dimitrov and D. Stevanović, On the σt-irregularity and the inverse irregularity problem, Appl. Math. Comput., 441 (2023) #127709.
[7] T. Došlić, I. Martinjak, R. Škrekovski, S. Tipurić Spužević and I. Zubac, Mostar index, J. Math. Chem., 56 (2018) 2995–3013.
[8] Ö. Eğecioğlu, E. Sayg, and Z. Saygi, The Mostar and Wiener index of alternate Lucas cubes, Trans. Comb., 12 (2023) 37–46.
[9] J. Fink, B. Lužar and R. Škrekovski, Some remarks on inverse Wiener index problem, Discrete Appl. Math., 160 (2012) 1851–1858.
[10] A.Y. Güneş, M. Togan, M. Demirci and I.N, Cangul, Inverse problem for Albertson irregularity index, TWMS J. Appl. Engin. Math., 12 (2022) 662–669.
[11] I. Gutman and A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta, 81 (2008) 263–266.
[12] I. Gutman and O. Polansky, Mathematical Concepts in organic Chemistry, Springer, Berlin (1986).
[13] I. Gutman, M. Togan, A. Yurttas, A. S. Cevik and I. N. Cangul, Inverse problem for sigma index, MATCH Commun. Math. Comput. Chem., 79 (2018) 491–508.
[14] I. Gutman, Y. N. Yeh and J. C. Chen, On the sum of all distances in graphs, Tamkang J. Math., 25 (1994) 83–86.
[15] F. Hayat and B. Zhou, On cacti with large Mostar index, Filomat, 33 (2019) 4865–4873.
[16] F. Hayat and B. Zhou, On Mostar index of trees with parameters, Filomat, 33 (2019) 6453–6458.
[17] S. Huang, S. Li and M. Zhang, On the extremal Mostar indices of hexagonal chains, MATCH Commun. Math. Comput. Chem., 84 (2020) 249–271.
[18] M. Imran, S. Akhter and Z. Iqbal, Edge Mostar index of chemical structures and nanostructures using graph operations, Int. J. Quantum Chem., 120 (2020), #e26259
[19] J. V. Kureethara, A. Asok and I. N. Cangul, Inverse problem for the forgotten and the hyper Zagreb indices of trees, Commun. Comb. Optim., 7 (2022) 203–209.
[20] M. Lepović and I. Gutman, A collective property of trees and chemical trees, J. Chem. Inf. Comput. Sci., 38 (1998) 823–826.
[21] X. Li, Z. Li and L. Wang, The inverse problems for some topological indices in combinatorial chemistry, J. Comput. Biol., 10 (2003) 47–55.
[22] X. Li, Y. Mao and I. Gutman, Inverse problem on the Steiner Wiener index, Discuss. Math. Graph Theory, 38 (2018) 83–95.
[23] H. Liu, L. Song, Q. Xiao and Z. Tang, On edge Mostar index of graphs, Iran. J. Math. Chem., 11 (2020) 95–106.
[24] D. Maji, G. Ghorai, M. K. Mahmood and M. A. Alam, On the inverse problem for some topological indices, J. Math., 2021 (2021), #9411696.
[25] T. Pisanski and M. Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, Discrete Appl. Math., 158 (2010) 1936–1944.
[26] A. Tepeh, Extremal bicyclic graphs with respect to Mostar index, Appl. Math. Comput., 355 (2019) 319–324.
[27] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim (2009).
[28] S. Wagner, A class of trees and its Wiener index, Acta Appl. Math., 91 (2006) 119–132.
[29] S. Wagner, A note on the inverse problem for the Wiener index, MATCH Commun. Math. Comput. Chem., 64 (2010) 639–646.
[30] S. Wagner, H. Wang and G. Yu, Molecular graphs and the inverse Wiener index problem, Discrete Appl. Math., 157 (2009) 1544–1554.
[31] S. Wagner and H. Wang, Introduction to Chemical Graph Theory CRC Press, Boca Raton (2018).
[32] H. Wang and G. Yu, All but 49 numbers are Wiener indices of trees, Acta Appl. Math., 92 (2006) 15–20.
[33] A. Yurtas, M. Togan, V. Lokesha I. N. Cangul and I. Gutman, Inverse problem for Zagreb indices, J. Math. Chem., 57 (2019) 609–615.

Articles in Press, Corrected Proof
Available Online from 20 May 2024
  • Receive Date: 15 October 2023
  • Revise Date: 16 March 2024
  • Accept Date: 24 April 2024
  • Published Online: 20 May 2024