[1] S. Akhter, R. Farooq and S. Pirzada, Exact formulae of general sum-connectivity index for some graph operations, Mat. Vesnik, 70 no. 3 (2018) 267–282.
[2] N. E. Arif, A. H. Karim and R. Hasni, Sombor index of some graph operations, Int. J. Nonlinear Anal. Appl., 13 no. 1 (2022) 2561–2571.
[3] B. Basavanagoud and A. P. Barangi, F -index and hyper-Zagreb index of four new tensor products of graphs and their complements, Discrete Math. Algorithms Appl., 11 no. 03 (2019) 14 pp.
[4] B. Basavanagoud, V. Desai, K. G. Mirajkar, B. Pooja and I. N. Cangul, Four new tensor products of graphs and their Zagreb indices and coindices, Electron. J. Math. Anal. Appl., 8 no. 1 (2020) 209–219.
[5] B. Bommanahal, M. Sayyed and B. Pooja, Topological indices of four new tensor products of graphs, Annals of Mathematics and Computer Science, 9 (2022) 52–66.
[6] K. C. Das, A. S. Çevik, I. N. Cangul and Y. Shang, On Sombor index, Symmetry, 13 no. 1 (2021) Article number: 140.
[7] N. De, F -index of graphs based on four operations related to the lexicographic product, Malaya J. Mat., 8 no. 2 (2020) 397–404.
[8] N. De, S. M. A. Nayeem and A. Pal, F -index of some graph operations, Discrete Math. Algorithms Appl., 8 no. 2 (2016) 17 pp.
[9] N. Dehgardi, S. Sheikholeslami and M. Soroudi, Some distance based indices of graphs based on four new operations related to the lexicographic product, Carpathian Math. Publ., 11 no. 2 (2019) 258–267.
[10] M. Eliasi and B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math., 157 no. 4 (2009) 794–803.
[11] M. Farahani, M. R. Kanna and R. P. Kumar, On the hyper-Zagreb indices of nano-structures, Asian Academic Research Journal of Multidisciplinary, 3 no. 1 (2016) 115–123.
[12] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem., 53 no. 4 (2015) 1184–1190.
[13] W. Gao, M. R. Farahani, M. K. Siddiqui, and M. K. Jamil, On the first and second Zagreb and first and second hyper-Zagreb indices of carbon nanocones CNCk [n], J. Comput. Theor. Nanosci., 13 no. 10 (2016) 7475–7482.
[14] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem, 86 no. 1 (2021) 11–16.
[15] I. Gutman, Some basic properties of Sombor indices, Open J. Discrete Appl. Math., 4 no. 1 (2021) 1–3.
[16] I. Gutman, V. Kulli, B. Chaluvaraju, and H. Boregowda, On Banhatti and Zagreb indices, J. Int. Math. Virtual Inst., 7 no. 1 (2017) 53–67.
[17] I. Gutman, E. Milovanović, and I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb., 17 (2020) 74–85.
[18] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 no. 4 (1972) 535–538.
[19] N. Harish, B. Sarveshkumar, and B. Chaluvaraju, The reformulated Sombor index of a graph, Trans. Comb., 13 no. 1 (2024) 1–16.
[20] Harisha, P. S. Ranjini, V. Lokesha, K-Banhatti indices for special graphs and vertex gluing graphs, International J. Math. Combin., 4 (2020) 89–99.
[21] B. Horoldagva and X. Chunlei, On Sombor index of graphs, MATCH Commun. Math. Comput. Chem, 86 no. 3 (2021) 703–713.
[22] W. Imrich and S. Klavžar, Product graphs. Structure and recognition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.
[23] V. Kulli, Sombor indices of certain graph operators, Int. J. Engin. Sci. Res. Technol., 10 no. 1 (2021) 127–134.
[24] V. R. Kulli, N. Harish, B. Chaluvaraju, and I. Gutman, Mathematical properties of KG Sombor index, Bull. Int. Math. Virtual Inst., 12 no. 2 (2022) 379–386.
[25] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem, 54 no. 1 (2005) 195–208.
[26] H. Liu, L. You, Y. Huang and Z. Tang, On extremal Sombor indices of chemical graphs, and beyond, MATCH Commun. Math. Comput. Chem, 89 (2023) 415–436.
[27] V. Lokesha, S. Jain, A. Cevik, and I. Cangul, New results on the F -index of graphs based on corona-type products of graphs, In Proc. Jangjeon Math. Soc., 23 (2020) 141–148.
[28] V. Lokesha, K. Z. Yasmeen, M. Manjunath and M. Venkatachalam, Lower and upper bounds of SK indices of F -join of graphs, Int. J. Open Problems Compt. Math., 13 no. 4 (2020) 13–25.
[29] A. Miličević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8 no. 4 (2004) 393–399.
[30] M. Nadjafi-Arani and H. Khodashenas, Distance-based topological indices of tensor product of graphs, Iranian J. Math. Chem., 3 no. 1 (2012) 45–53.
[31] K. Pattabiraman, Four new operations related to composition and their hyper-Zagreb index, Southeast Asian Bull. Math., 43 no. 6 (2019).
[32] E. Sampathkumar and S. Chikkodimath, Semitotal graphs of a graph-I, J. Karnatak Univ. Sci., 18 (1973) 274–280.
[33] D. Sarala, H. Deng, S. Ayyaswamy, and S. Balachandran, The Zagreb indices of graphs based on four new operations related to the lexicographic product, Appl. Math. Comput., 309 (2017) 156–169.
[34] G. Shirdel, H. Rezapour and A. Sayadi, The hyper-Zagreb index of graph operations, Iranian J. Math. Chem., 4 no. 2 (2013) 213–220.
[35] B. Shwetha Shetty, V. Lokesha and P. Ranjini, On the harmonic index of graph operations, Trans. comb., 4 no. 4 (2015) 5–14.
[36] H. M. A. Siddiqui, S. Baby, M. F. Nadeem and M. K. Shafiq, Bounds of some degree based indices of lexico-graphic product of some connected graphs, Polycyclic Aromat. Compd., 42 no. 5 (2022) 2568–2580.
[37] Z. Wang, Y. Mao, Y. Li and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput., 68 (2022) 1-17.
[38] D. B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
[39] Z. Yarahmadi, S. Moradi and T. Došlić, Eccentric connectivity index of graphs with subdivided edges, Electron. Notes Discrete Math., 45 (2014) 167–176.
[40] B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 no. 4 (2009) 1252–1270.
[41] B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47 no. 1 (2010) 210–218.