The Frobenius complement of a given Frobenius group acts on its kernel. The scheme which is arisen from the orbitals of this action is called Ferrero pair scheme. In this paper, we show that the fibers of a Ferrero pair scheme consist of exactly one singleton fiber and every two fibers with more than one point have the same cardinality. Moreover, it is shown that the restriction of a Ferrero pair scheme on each fiber is isomorphic to a regular scheme. Finally, we prove that for any prime $p$, there exists a Ferrero pair $p$-scheme, and if $p> 2$, then the Ferrero pair $p$-schemes of the same rank are all isomorphic.
K. I. Beidar, W. F. Ke and H. Kiechle (2007). Automorphisms of certain design groups II. J. Algebra. 313 (2), 672-686 R. Brown (2001). Frobenius groups and classical maximal orders. Mem. Amer. Math. Soc.. 151 (717), 0-110 J. D. Dixon and B. Mortimer (1996). Permutation Groups. Graduate Texts in Mathematics, Springer-Verlag, New
York. 163 S. A. Evdokimov and I. N. Ponomarenko (2003). Characterization of cyclotomic schemes and normal Schur rings over a cyclic group. Algebra i Analiz, 14 no. 2 (2002) 11-55, translation in St. Petersburg Math. J.. 14 (2), 189-221 S. Evdokimov and I. Ponomarenko (2009). Permutation group approach to association schemes. European J. Combin.. 30, 1456-1476 B. Huppert (1998). Character theory of finite groups. de Gruyter Expositions in Mathematics, 25 Walter de Gruyter $\&$ Co., Berlin. 25 D. S. Passman (1968). Permutation Groups. W. A. Benjamin, Inc., New York-Amsterdam. I. N. Ponomarenko and A. Rahnamai Barghi (2007). On the structure of $p$-schemes. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 344} (2007), translation in J. Math. Sci. (N. Y.). 147 (6), 7227-7233 J. A. Wolf (1967). Spaces of Constant Curvature. McGraw-Hill Book Co., New York-London-Sydney. P. H. Zieschang (2005). Theory of Association Schemes. Springer Monographs in Mathematic, Springer-Verlag, Berlin.
Moshtagh, H., & Rahnamai Barghi, A. (2013). On schemes originated from Ferrero pairs. Transactions on Combinatorics, 2(2), 19-26. doi: 10.22108/toc.2013.2869
MLA
Hossein Moshtagh; Amir Rahnamai Barghi. "On schemes originated from Ferrero pairs". Transactions on Combinatorics, 2, 2, 2013, 19-26. doi: 10.22108/toc.2013.2869
HARVARD
Moshtagh, H., Rahnamai Barghi, A. (2013). 'On schemes originated from Ferrero pairs', Transactions on Combinatorics, 2(2), pp. 19-26. doi: 10.22108/toc.2013.2869
VANCOUVER
Moshtagh, H., Rahnamai Barghi, A. On schemes originated from Ferrero pairs. Transactions on Combinatorics, 2013; 2(2): 19-26. doi: 10.22108/toc.2013.2869