Three new classes of binomial Fibonacci sums

Document Type : Research Paper

Author

Independent Researcher, 72762 Reutlingen, Germany

Abstract

In this paper, we introduce three new classes of binomial sums involving Fibonacci (Lucas) numbers and weighted binomial coefficients. One particular result is linked to a problem proposal recently published in the journal The Fibonacci Quarterly.

Keywords

Main Subjects


[1] K. Adegoke, Weighted sums of some second-order sequences, Fibonacci Quart., 56 no. 3 (2018) 252–262.
[2] K. Adegoke, A. Olatinwo and S. Ghosh, Cubic binomial Fibonacci sums, Electron. J. Math., 2 (2021) 44–51.
[3] K. Adegoke, R. Frontczak and T. Goy, Binomial Fibonacci sums from Chebyshev polynomials, J. IntegerSeq., 26 no. 9 (2023) 26 pp.
[4] K. Adegoke, R. Frontczak and T. Goy, Binomial sum relations involving Fibonacci and Lucas numbers,Applied Math. 1 (2023) 1–31.
[5] K. Adegoke, R. Frontczak and T. Goy, New binomial Fibonacci sums, Palest. J. Math., 13 no. 1 (2024)323–339.
[6] M. Bai, W. Chu and D. Guo, Reciprocal formulae among Pell and Lucas polynomials, Mathematics, 10(2022).
[7] L. Carlitz, Some classes of Fibonacci sums, Fibonacci Quart., 16 no. 5 (1978) 411–425.
[8] L. Carlitz and H. H. Ferns, Some Fibonacci and Lucas identities, Fibonacci Quart. 8 no. 1 (1970) 61–73.
[9] G. Dattoli, S. Licciardi and R. M. Pidatella, Inverse derivative operator and umbral methods for theharmonic numbers and telescopic series study, Symmetry, 13 (2021).
[10] R. Frontczak, Advanced Problem H-882, Fibonacci Quart., 59 no. 3 (2021) 281.
[11] H. W. Gould, Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial CoefficientSummations, Morgantown, USA, 1972.
[12] V. E. Hoggatt, Jr. and M. Bicknell, Some new Fibonacci identities, Fibonacci Quart., 2 no. 1 (1964)121–133.
[13] V. E. Jr. Hoggatt, J. W. Phillips and H. T. Jr. Leonard, Twenty-four master identities, Fibonacci Quart.,9 no. 1 (1971) 1–17.
[14] D. Jennings, Some polynomial identities for the Fibonacci and Lucas numbers, Fibonacci Quart., 31 no. 2(1993) 134–137.
[15] E. Kiliç and E. J. Ionascu, Certain binomial sums with recursive coefficients, Fibonacci Quart., 48 no. 2(2010) 161–167.
[16] E. Kiliç, N. Ömür and Y. T. Ulutas, Binomial sums whose coefficients are products of terms of binarysequences, Util. Math., 84 (2011) 45–52.
[17] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.
[18] M. J. Kronenburg, Some weighted generalized Fibonacci number summation identities, Part 2, preprint,2021. https://arxiv.org/abs/2106.11838
[19] J. W. Layman, Certain general binomial-Fibonacci sums, Fibonacci Quart., 15 no. 4 (1977) 362–366.
[20] C. T. Long, Some binomial Fibonacci identities, Applications of Fibonacci Numbers, 3, Dordrecht: Kluwer,Editors: G. E. Bergum, A. N. Philippou, A. F. Horadam, 1990 241–254.
[21] Y. T. Ulutaş and D. Toy, Some equalities and binomial sums about the generalized Fibonacci number un,Notes Number Theory Discrete Math., 28 no. 2 (2022) 252–260.
[22] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Press,2008.
[23] A. Ventas, Solution to Advanced Problem H-882, Fibonacci Quart., 61 no. 1 (2023) 95–96.
[24] D. Zeitlin, General identities for recurrent sequences of order two, Fibonacci Quart., 9 no. 4 (1971) 357–388.
[25] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
Volume 14, Issue 4 - Serial Number 4
December 2025
Pages 251-259
  • Receive Date: 04 May 2024
  • Revise Date: 27 September 2024
  • Accept Date: 27 September 2024
  • Published Online: 15 November 2024