In this paper we study the first Zagreb index in bucket recursive trees containing buckets with variable capacities. This model was introduced by Kazemi in 2012. We obtain the mean and variance of the first Zagreb index and introduce a martingale based on this quantity.
P. Billingsley (1995). Probability and Measure. A Wiley-Interscience Publication, John Wiley and Sons, Inc., New York. J. Devillersand and A. T. Balaban (1999). Topological indices and
related descriptors in QSAR and QSPR. Gordon and Breach,
Amsterdam. I. Gutman and N. Trinajstic (1972). Graph theory and molecular
orbitals. Total $\varphi$-electron energy of alternant
hydrocarbons. Chem. Phys. Lett.. 17, 535-538 M. Kuba and A. Panholzer (2010). A Combinatorial approach to the
analysis of bucket recursive trees. Theoret. Comput. Sci.. 411 (34-36), 3255-3273 H. Mahmoud and R. Smythe (1995). Probabilistic analysis of bucket
recursive trees. Theoret. Comput. Sci.. 144, 221-249 S. Nikolic, I. M. Tolic, N. Trinajstic and I.
Baucc (2000). On the Zagreb indices as complexity
indices. Croatica Chemica Acta.. 73, 909-921 S. Nikolic, G. Kovacc, A.
Milicc and N. Trinajstic (2003). On
molecular complexity indices, In Complexity in Chemistry:
Introduction and Fundamentals. eds D. Bonchev and D. H. Rouvray,
Taylor and Francis, London. , 29-89 R. Kazemi (2013). Depth in bucket recursive trees with variable
capacities of buckets. Acta Math. Sin. Engl. Ser., DOI: http://dx.doi.org/10.1007/s10114-013-2115-2. X. Li, Z. Li and L. Wang (2003). The inverse problems for some
topological indices in combinatorial chemistry. J. Comput.
Biol.. 10, 47-55