The first and second Zagreb indices of hypergraphs

Document Type : Research Paper

Author

Department of Mathematics, Pennsylvania State University at Abington, Abington, PA, 19001, USA

Abstract

Let $\mathcal{H}$ be a hypergraph on the non-empty finite vertex set $V(\mathcal{H})$ with the hyperedge set $E(\mathcal{H})$, where each hyperedge $e\in E(\mathcal{H})$ is a subset of $V(\mathcal{H})$ with at least two vertices.
The bounds on the first and second Zagreb indices of hypergraphs, weak bipartite hypergraphs, hypertrees, $k$-uniform hypergraphs, $k$-uniform weak bipartite hypergraphs, and $k$-uniform hypertrees are discussed.

Keywords

Main Subjects


[1] S. Ashraf, M. Imran, S. A. U. H. Bokhary and S. Akhter, The Wiener index, degree distance index and Gutman index of composite hypergraphs and sunflower hypergraphs, Heliyon, 8 (2022) e12382.
[2] J. Cooper and A. Dutle, Computing hypermatrix spectra with the Poisson product formula, Linear Multilin. Algebra, 63 no. 5 (2015) 956–970.
[3] Y. Feng, Z. Zhu, Y. Wang and M. Zhang, The extremal t-uniform unicyclic hypergraph on Estrada index, Filomat, 37 no. 19 (2023) 6497–6504.
[4] H. Guo and B. Zhou, Properties of degree distance and Gutman index of uniform hypergraphs, MATCH Commun. Math. Comput. Chem., 78 no. 1 (2017) 213–220.
[5] H. Guo, B. Zhou and H. Lin, The Wiener index of uniform hypergraphs, MATCH Commun. Math. Comput. Chem., 78 no. 1 (2017) 133–152.
[6] I. Gutman and K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
[7] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535–538.
[8] E. V. Konstantinova and V. A. Skorobogatov, Application of hypergraph theory in chemistry, Discrete Math., 235 no. 1-3 (2001) 365–383.
[9] J. Nieminen and M. Peltola, Hypertrees, Appl. Math. Lett., 12 no. 2 (1999) 35–38.
[10] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113–124.
[11] J. A. Rodrı́guez, On the Wiener index and the eccentric distance sum of hypergraphs, MATCH Commun. Math. Comput. Chem., 54 (2005) 209–220.
[12] S. S. Shetty and K. A. Bhat, Sombor index of hypergraphs, MATCH Commun. Math. Comput. Chem., 91 (2024) 235–254.
[13] L. Sun, J. Wu, H. Cai and Z. Luo, The Wiener index of r-uniform hypergraphs, Bull. Malays. Math. Sci. Soc., 40 (2017) 1093–1113.
[14] T. Vetrı́k, Degree-based indices of hypergraphs: Definitions and first results, Asian-Eur. J. Math., 17 no. 4 (2024) 14 pp.
[15] W.-H. Wang and Y.-S. Xue, On the r-uniform linear hypertrees with extremal Estrada indices, Appl. Math. Comput., 377 (2020) 11 pp.
[16] W. Weng, B. Zhou, On the eccentric connectivity index of uniform hypergraphs, Discrete. Appl. Math., 309 (2022) 180–193.

Articles in Press, Corrected Proof
Available Online from 25 December 2024
  • Receive Date: 18 April 2024
  • Revise Date: 01 December 2024
  • Accept Date: 14 December 2024
  • Published Online: 25 December 2024