Automorphism group of a family of distance-regular graphs which are not distance-transitive

Document Type : Research Paper

Authors

1 Department of Mathematics, Lorestan University, Khorramabad, Iran

2 Department of Mathematics, Presidency University, Kolkata, India

Abstract

Let $G_n=\mathbb{Z}_n\times \mathbb{Z}_n$ for $n\geq 4$ and $S=\{(i,0),(0,i),(i,i): 1\leq i \leq n-1\}\subset G_n$. Define $\Gamma(n)$ to be the Cayley graph of $G_n$ with respect to the connecting set $S$. It is known that $\Gamma(n)$ is a strongly regular graph with the parameters $(n^2, 3n-3, n, 6)$ \cite{19}. Hence $\Gamma(n)$ is a distance-regular graph. It is known that every distance-transitive graph is distance-regular, but the converse is not true. In this paper, we study some algebraic properties of the graph $\Gamma(n)$. Then by determining the automorphism group of this family of graphs, we show that the graphs under study are not distance-transitive.

Keywords

Main Subjects


[1] N. L. Biggs, Algebraic graph theory, Second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
[2] S. Biswas and A. Das, A family of tetravalent half-transitive graphs, Proc. Indian Acad. Sci. Math. Sci., 131 no. 2 (2021) 17 pp.
[3] S. Biswas, A. Das and M. Saha, Generalized Andrásfai graphs, Discuss. Math. Gen. Algebra Appl., 42 no. 2 (2022) 449–462.
[4] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer-Verlag, Berlin, 1989.
[5] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996.
[6] C. Godsil and G. Royle, Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001
[7] C. D. Godsil, R. A. Liebler, C. E. Praeger, Antipodal distance transitive covers of complete graphs, European Journal of Combinatorics, 19 no. 4 (1998) 455–478.
[8] S. M. Mirafzal, Some other algebraic properties of folded hypercubes, Ars Comb., 124 (2016) 153–159.
[9] S. M. Mirafzal, The automorphism group of the bipartite Kneser graph, Proc. Indian Acad. Sci. Math. Sci., 129 no. 3 (2019) 8 pp.
[10] S. M. Mirafzal and M. Ziaee, Some algebraic aspects of enhanced Johnson graphs, Acta Math. Univ. Comenian. (N.S.), 88 no. 2 (2019) 257–266.
[11] S. M. Mirafzal, Cayley properties of the line graphs induced by consecutive layers of the hypercube, Bull. Malays. Math. Sci. Soc., 44 no. 3 (2021) 1309–1326.
[12] S. M. Mirafzal, On the automorphism groups of connected bipartite irreducible graphs, Proc. Indian Acad. Sci. Math. Sci., 130 no. 1 (2020) 15 pp.
[13] S. M. Mirafzal, A note on the automorphism groups of Johnson graphs, Ars Combin., 154 (2021) 245–255.
[14] S. M. Mirafzal and M. Ziaee, A note on the automorphism group of the Hamming graph, Trans. Comb., 10 no. 2 (2021) 129–136.
[15] S. M. Mirafzal, The line graph of the crown graph is distance integral, Linear Multilinear Algebra, 71 no. 4 (2023) 662–672.
[16] S. M. Mirafzal, The automorphism group of the Andrásfai graph, Discrete Math. Lett., 10 (2022) 60–63.
[17] S. M. Mirafzal, Some remarks on the square graph of the hypercube, Ars Math. Contemp., 23 no. 2 (2023) 16 pp.
[18] S. M. Mirafzal, On the automorphism groups of us-Cayley graphs, Art Discrete Appl. Math., 7 no. 1 (2024) 11 pp.
[19] S. M. Mirafzal, Some algebraic properties of the subdivision graph of a graph, Commun. Comb. Optim., 9 no. 2 (2024) 297–307.
[20] D. Marusic, Bicirculants via imprimitivity block systems, Mediterr. J. Math., 18 no. 3 (2021) 15 pp.
[21] B. Nica, A brief introduction to spectral graph theory, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2018.
[22] W. Stein and others, Sage Mathematics Software (Version 7.3), Release 2016, http://www.sagemath.org.
[23] E. R. van Dam, J. H. Koolen and H. Tanaka, Distance-regular graphs, Electron. J. Combin., DS22 (2016) 156 pp.
[24] J. X. Zhou, J. H. Kwak, Y. Q. Feng and Z. L. Wu, Automorphism group of the balanced hypercube, Ars Math. Contemp., 12 no. 1 (2017) 145–154.

Articles in Press, Corrected Proof
Available Online from 10 January 2025
  • Receive Date: 06 August 2024
  • Revise Date: 03 January 2025
  • Accept Date: 03 January 2025
  • Published Online: 10 January 2025