A $2$-rainbow dominating function (2RDF) of a graph $G$ is a function $f$ from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2\}$ such that for any vertex $v\in V(G)$ with $f(v)=\emptyset$ the condition $\bigcup_{u\in N(v)}f(u)=\{1,2\}$ is fulfilled, where $N(v)$ is the open neighborhood of $v$. The weight of a 2RDF $f$ is the value $\omega(f)=\sum_{v\in V}|f (v)|$. The $2$-rainbow domination number of a graph $G$, denoted by $\gamma_{r2}(G)$, is the minimum weight of a 2RDF of G.
The annihilation number $a(G)$ is the largest integer $k$ such that the sum of the first $k$ terms of the non-decreasing degree sequence of $G$ is at most the number of edges in $G$. In this paper, we prove that for any tree $T$ with at least two vertices, $\gamma_{r2}(T)\le a(T)+1$.
N. Dehgardai, S. Norouzian and S. M. Sheikholeslami (2013). Bounding the domination number of a tree in terms of its
annihilation number. Trans. Comb.. 2 (1), 9-16 B. Brechecksar, M. A. Henning and D. F. Rall (2008). Rainbow domination in graphs. Taiwanese J. Math.. 12, 213-225 B. Brechecksar and T. K. Sumenjak (2007). On the 2-rainbow domination in graphs. Discrete Appl. Math.. 155, 2394-2400 G. J. Chang, J. Wu and X. Zhu (2010). Rainbow domination on trees. Discrete Appl. Math.. 158, 8-12 T. Chunling, L. Xiaohui, Y. Yuansheng and L. Meiqin (2009). 2-rainbow domination of generalized
Petersen graphs P(n,2). Discrete Appl. Math.. 157, 1932-1937 W. J. Desormeaux, T. W. Haynes and M. A. Henning (2013). Relating the annihilation number and the total domination number
of a tree. Discrete Appl. Math.. 161, 349-354 C. E. Larson and R. Pepper (2011). Graphs with equal independence and annihilation numbers. The Electron. J. Combin.. 18, 0 D. Meierling, S. M. Sheikholeslami and L. Volkmann (2011). Nordhaus-Gaddum bounds on
the $k$-rainbow domatic number of a graph. Appl. Math. Lett.. 24, 1758-1761 R. Pepper (2004). Binding Independence. Ph.D. Dissertation, University of Houston. R. Pepper (2009). On the annihilation number of a graph. Recent Advances In Electrical
Engineering: Proceedings of the 15th American Conference on Applied Mathematics. , 217-220 S. M. Sheikholeslami and L. Volkmann (2012). The k-rainbow domatic number of a graph. Discuss. Math. Graph Theory. 32, 129-140 Y. Wu and N. Jafari Rad (2013). Bounds on the 2-rainbow domination number of graphs. Graphs Combin.. 29 (4), 1125-1133 G. Xu (2009). 2-rainbow domination of generalized Petersen graphs P(n,3). Discrete Appl. Math.. 157, 2570-2573
Dehgardi, N., Sheikholeslami, M., & Khodkar, A. (2013). Bounding the rainbow domination number of a tree in terms of its annihilation number. Transactions on Combinatorics, 2(3), 21-32. doi: 10.22108/toc.2013.3051
MLA
Nasrin Dehgardi; Mahmoud Sheikholeslami; Abdollah Khodkar. "Bounding the rainbow domination number of a tree in terms of its annihilation number". Transactions on Combinatorics, 2, 3, 2013, 21-32. doi: 10.22108/toc.2013.3051
HARVARD
Dehgardi, N., Sheikholeslami, M., Khodkar, A. (2013). 'Bounding the rainbow domination number of a tree in terms of its annihilation number', Transactions on Combinatorics, 2(3), pp. 21-32. doi: 10.22108/toc.2013.3051
VANCOUVER
Dehgardi, N., Sheikholeslami, M., Khodkar, A. Bounding the rainbow domination number of a tree in terms of its annihilation number. Transactions on Combinatorics, 2013; 2(3): 21-32. doi: 10.22108/toc.2013.3051