N. Alon and E. Lubetzky (2007). Independent set in tensor graph powers. J. Graph Theory. 54, 73-87 A. M. Assaf (1990). Modified group divisible designs. Ars Combin.. 29, 13-20 B. Bresar, W. Imrich, S. Klavv{z}ar and B. Zmazek (2005). Hypercubes as direct products. SIAM J. Discrete Math.. 18, 778-786 K. C. Das, B. Zhou and N. Trinajsti'c (2009). Bounds on Harary index. J. Math. Chem.. 46, 1377-1393 A. A. Dobrynin and A. A. Kochetova (1994). Degree distance of a graph: a degree analogue of the Wiener index. J. Chem. Inf. Comput. Sci.. 34, 1082-1086 J. Devillers, A. T. Balaban and Eds. (1999). Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, The Netherlands. L. Feng and A. Ilic (2010). Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number. Appl. Math. Lett.. 23, 943-948 I. Gutman (1994). Selected properties of the Schultz molecular topological index. J. Chem. Inf. Comput. Sci.. 34, 1087-1089 I. Gutman and O. E. Polansky (1986). Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin. M. Hoji, Z. Luo and E. Vumar (2010). Wiener and vertex PI indices of kronecker products of graphs. Discrete Appl. Math.. 158, 1848-1855 H. Hua and S. Zhang (2012). On the reciprocal degree distance of graphs. Discrete Appl. Math.. 160, 1152-1163 W. Imrich and S. Klavzar (2000). Product graphs: Structure and Recognition. John Wiley, New York. O. Ivanciuc and T. S. Balaban (1993). Reciprocal distance matrix, related local vertex invariants and topological indices. J. Math. Chem.. 12, 309-318 M. H. Khalifeh, H. Youseri-Azari and A. R. Ashrafi (2008). Vertex and edge PI indices of Cartesian product of graphs. Discrete Appl. Math.. 156, 1780-1789 B. Lucic, A. Milicevic, S. Nikolic and N. Trinajstic (2002). Harary index-twelve years later. Croat. Chem. Acta. 75, 847-868 A. Mamut and E. Vumar (2008). Vertex vulnerability parameters of Kronecker products of complete graphs. Inform. Process. Lett.. 106, 258-262 K. Pattabiraman and P. Paulraja (2012). On some topological indices of the tensor product of graphs. Discrete Appl. Math.. 160, 267-279 K. Pattabiraman and P. Paulraja (2012). Wiener and vertex PI indices of the strong product of graphs. Discuss. Math. Graph Thoery. 32, 749-769 K. Pattabiraman and P. Paulraja (2011). Wiener index of the tensor product of a path and a cycle. Discuss. Math. Graph Thoery. 31, 737-751 D. Plavsic, S. Nikolic, N. Trinajstic and Z. Mihalic (1993). On the Harary index for the characterization of chemical graphs. J. Math. Chem.. 12, 235-250 K. Xu and K. C. Das (2011). On Harary index of graphs. Discrete. Appl. Math.. 159, 1631-1640 H. Yousefi-Azari, M. H. Khalifeh and A. R. Ashrafi (2011). Calculating the edge Wiener and edge Szeged indices of graphs. J. Comput. Appl. Math.. 235, 4866-4870 B. Zhou, Z. Du and N. Trinajstic (2008). Harary index of landscape graphs. Int. J. Chem. Model.. 1, 35-44 B. Zhou, X. Cai and N. Trinajstic (2008). On the Harary index. J. Math. Chem.. 44, 611-618