Let $A$ be a non-trivial abelian group and $A^{*}=A\setminus \{0\}$. A graph $G$ is said to be $A$-magic graph if there exists a labeling $l:E(G)\rightarrow A^{*}$ such that the induced vertex labeling $l^{+}:V(G)\rightarrow A$, define by $$l^+(v)=\sum_{uv\in E(G)} l(uv)$$ is a constant map. The set of all constant integers such that $\sum_{u\in N(v)} l(uv)=c$, for each $v\in N(v)$, where $N(v)$ denotes the set of adjacent vertices to vertex $v$ in $G$, is called the index set of $G$ and denoted by ${\rm In}_{A}(G).$
In this paper we determine the index set of certain planar graphs for $\mathbb{Z}_{h}$, where $h\in \mathbb{N}$, such as wheels and fans.
E. Salehi (2007). Zero-sum magic graphs and their null sets. Ars
Combin.. 82, 41-53 E. Salehi (2006). Integer-magic spectra of cycle related
graphs. Iranian J. Math. Sci Inform. 1 (2), 53-63 E. Salehi and S. Hansen (2010). Zero sum magic and null
sets of planar graphs. J. Combin. Math. Combin. Comput.. 72, 55-64 E. Salehi (2008). On zero-sum magic graphs and their null
sets. Bull. Inst. Math. Acad. Sin. (N.S.). 3, 255-264 J. Sedlacek (1976). On magic graphs. Math. Slovaca. 26, 329-335 J. Sedlacek (1976). Some properties of magic graphs, in Graphs, Hypergraph, and Bloc Syst. Proc. Symp. Comb. Anal,
Zielona Gora. , 247-253 T.-M. Wang and S.-W. Hu (2011). Constant sum flows in regular graphs. Lecture Notes in Computer Science. 6681, 168-175
Nikmehr, M. J., & Bahramian, S. (2014). Group magicness of certain planar graphs. Transactions on Combinatorics, 3(2), 1-9. doi: 10.22108/toc.2014.4268
MLA
Mohammad Javad Nikmehr; Samaneh Bahramian. "Group magicness of certain planar graphs". Transactions on Combinatorics, 3, 2, 2014, 1-9. doi: 10.22108/toc.2014.4268
HARVARD
Nikmehr, M. J., Bahramian, S. (2014). 'Group magicness of certain planar graphs', Transactions on Combinatorics, 3(2), pp. 1-9. doi: 10.22108/toc.2014.4268
VANCOUVER
Nikmehr, M. J., Bahramian, S. Group magicness of certain planar graphs. Transactions on Combinatorics, 2014; 3(2): 1-9. doi: 10.22108/toc.2014.4268