G. Chartand and L. Lesniak (2005). Graphs and Digraphs. Fourth edition, CRC Press, Boca Raton, FL. P. Dankelmann, J. H. Hattingh, M. A. Henning and
H. C. Swart (2006). Trees with equal domination and Restrained Domination numbers. J. Global Optim.. 34, 597-607 G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus (1999). Restrained domination in graphs. Discrete Math.. 203, 61-69 G. S. Domke, J. H. Hattingh, S. T. Hedetniemi and L. R. Markus (2009). Restrained domination in trees. Discrete Math.. 211, 1-9 G. S. Domke, J. H. Hattingh, M. A. Henning and L. R. Markus (2000). Restrained domination in graphs with minimum degree two. J. Combin. Math. Combin. Comput.. 35, 239-254 E. Ebrahimi Targhi, N. Jafari Rad and L. Volkmann (2011). Unique response roman domination in graphs. Discrete Appl. Math.. 159, 1110-1117 E. J. Cockayne, P. A. Dreyer Jr., Sandra M. Hedetniemi and S. Hedetniemi (2004). Roman domination in graphs. Discrete Math.. 278, 11-22 O. Favaron, H. Karami, R. Khoeilar and S. M. Sheikholeslami (2009). Note on the roman domination number of a graph. Discrete Math.. 309, 3447-3451 X. Fu, Y. Yang and B. Jiang (2009). Roman domination in regular graphs. Discrete Math.. 309, 1528-1537 A. Hansberg and L. Volkmann (2009). Upper bounds on the $k$-domination number and the $k$-roman domination number. Discrete Appl. Math.. 157, 1634-1639 T. W. Haynes, S. T. Hedetniemi and P. J. Slater and eds. (1998). Fundamentals of domination in graphs. Marcel Dekker, Inc., New York. 208 T. W. Haynes, S. T. Hedetniemi and P. J. Slater and eds. (1998). Domination in graphs; Advanced Topics. Marcel Dekker, Inc. New York. M. A. Henning and S. T. Hedetniemi (2003). Defending the roman empire-A new strategy. Discrete Math.. 266, 239-251 M. A. Henning (1999). Graphs with large restrained domination number. Discrete Math.. 197/198, 415-429 M. A. Henning (2002). A characterization of Roman trees. Discuss. Math. Graph Theory. 22 (2), 325-334 M. A. Henning (2003). Defending the roman empire from multiple attacks. Discrete Math.. 271, 101-115 H.-M. Xing, Xin Chen and X.-G. Chen (2006). A note on roman domination in graphs. Discrete Math.. 306, 3338-3340 N. Jafari Rad and L. Volkmann (2011). On the roman bondage number of planar graphs. Graphs Combin.. 27, 531-538 N. Jafari Rad and L. Volkmann (2011). Roman domination perfect graph. An. Stiint. Univ. ``Ovidius'' Constanta Ser. Mat.. 19 (3), 167-174 T. Kraner Sumenjak, P. Pavlic and A. Tepeh (2012). On the roman domination in the lexicographic products of graphs. Discrete Appl. Math.. 160 (13-14), 2030-2036 C. S. ReVelle (1997). Test your solution to ``Can you protect the Roman Empire?. John Hopkins Magazine. 49 (3), 70 C. S. ReVelle and K. E. Rosing (2000). Defendens Romanum: Imperium problem in military strategy. American Mathematical Monthly. 107 (7), 585-594 R. R. Rubalcaba and P. J. Slater (2007). Roman domination influence parameters. Discrete Math.. 307, 3194-3200 P. Roushini Leely Pushpam and T. N. M. Malini Mai (2008). On efficiently roman dominatable graphs. J. Combin Math. Combin. Comput.. 67, 49-58 P. Roushini Leely Pushpam and T. N. M. Malini Mai (2009). Edge roman domination in graphs. J. Combin Math. Combin. Comput.. 69, 175-182 P. Roushini Leely Pushpam and T. N. M. Malini Mai (2011). Weak roman domination in graphs. Discuss. Math. Graph Theory. 31, 115-128 P. Roushini Leely Pushpam and T. N. M. Malini Mai (2011). Weak edge roman domination in graphs. Australas. J. Comb.. 51, 125-138 P. Roushini Pushpam and T. N. M. Malini Mai (2012). Roman domination in unicyclic graphs. Journal of Discrete Mathematical Sciences and Cryptography. 15, 237-257 I. Stewart (1999). Defend the Roman Empire!. Scientific American. 281 (6), 136-138