S. Akbari, D. Kiani, F. Mohammadi and S. Moradi (2009). The total graph and regular graph of a commutative ring. J.
Pure Appl. Algebra. 213, 2224-2228
S. Akbari, N. Ghareghani, G. B. Khosrovshahi and A. Mahmoody (2009). On zero-sum 6-
ows of graphs. Linear Algebra
Appl.. 430, 3047-3052
S. Akbari, A. Daemi, O. Hatami, A. Javanmard and A. Mehrabian (2010). Zero-sum
ows in regular graphs. Graphs
Combin.. 26, 603-615
S. Akbari, N. Ghareghani, G. B. Khosrovshahi and S. Zare (2012). A note on zero-sum 5-
ows in regular graphs. Electron.
J. Combin., Paper 7. 19, 0
D. F. Anderson and A. Badawi (2008). The total graph of a commutative ring. J. Algebra,. 320, 2706-2719
D. F. Anderson and A. Badawi (2012). The total graph of a commutative ring without the zero element. J. Algebra Appl., DOI: 10.1142/S0219498812500740. 11, 0
T. T. Chelvam and T. Asir (2011). Domination in the total graph on Zn. Discrete Math. Algorithms Appl.. 3, 413-421
T. T. Chelvam and T. Asir (2013). Domination in the total graph of a commutative ring. J. Combin. Math. Combin.
Comput.. 87, 147-158
T. T. Chelvam and T. Asir (2011). A note on total graph of Zn. J. Discrete Math. Sci. Cryptogr.. 14, 1-7
D. Konig (1916). Uber Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. (German), Math. Ann.. 77, 453-465
H. R. Maimani, C. Wickham and S. Yassemi (2012). Rings whose total graphs have genus at most one. Rocky Mountain
J. Math.. 42, 1551-1560
J. Petersen (1891). Die Theorie der regularen Graphs. Acta Math.. 15, 193-220
H. Shahmohamad (2002). On minimum
ow number of graphs. Bull. Inst. Combin. Appl.. 35, 26-36
M. H. Shekarriz, M. H. Shirdareh Haghighi and H. Sharif (2012). On the total graph of a nite commutative ring. Comm.
Algebra. 40, 2798-2807
C. Q. Zang (1997). Integer
ows and cycle covers of graphs. Marcel Dekker, Marcel Dekker,.