The main result of this paper gives a characterization of association schemes having commutative thin thin residue. This gives a generalization of Ito's Theorem on finite groups for association schemes.
A. Hanaki (2011). Faithful representation of association schemes. Proc. Amer. Math. Soc.. 139, 3191-3193 A. Hanaki (2009). Clifford theory for association schemes. J. Algebra. 321, 1686-1695 A. Hanaki (2008). Nilpotent schemes and group-like schemes. J. Combin. Theory Ser. A. 115, 226-236 A. Hanaki (2003). Representations of association schemes and their factor schemes. Graphs Combin.. 19, 195-201 A. Hanaki Data for Association Schemes. http://kissme.shinshu-u.ac.jp/as/data. M. Hirasaka and M. Muzychuk (2002). Association schemes generated by a non-symmetric relation of valency 2. Discrete Math.. 244, 109-135 M. Isaacs (1994). Character Theory of Finite Groups. Dover Publications, Inc., New York. P.-H. Zieschang (2005). Theory of Association Schemes. Springer Monographs in Mathematics, Springer-Verlag, Berlin.
Bagherian, J. (2014). On association schemes with commutative thin thin residue. Transactions on Combinatorics, 3(3), 35-41. doi: 10.22108/toc.2014.5491
MLA
Bagherian, J. . "On association schemes with commutative thin thin residue", Transactions on Combinatorics, 3, 3, 2014, 35-41. doi: 10.22108/toc.2014.5491
HARVARD
Bagherian, J. (2014). 'On association schemes with commutative thin thin residue', Transactions on Combinatorics, 3(3), pp. 35-41. doi: 10.22108/toc.2014.5491
CHICAGO
J. Bagherian, "On association schemes with commutative thin thin residue," Transactions on Combinatorics, 3 3 (2014): 35-41, doi: 10.22108/toc.2014.5491
VANCOUVER
Bagherian, J. On association schemes with commutative thin thin residue. Transactions on Combinatorics, 2014; 3(3): 35-41. doi: 10.22108/toc.2014.5491