Comparing the second multiplicative Zagreb coindex with some graph invariants

Document Type : Research Paper

Authors

1 Science and Research Branch, Islamic Azad University

2 Department of Mathematics, Tarbiat Modares University, P. O. Box 14115-137, Tehran

3 Kazerun Branch, Islamic Azad University

Abstract

‎‎The second multiplicative Zagreb coindex of a simple graph $G$ is‎ ‎defined as‎: ‎$${\overline{\Pi{}}}_2\left(G\right)=\prod_{uv\not\in{}E(G)}d_G\left(u\right)d_G\left(v\right),$$‎ ‎where $d_G\left(u\right)$ denotes the degree of the vertex $u$ of‎ ‎$G$‎. ‎In this paper‎, ‎we compare $\overline{{\Pi}}_2$-index with‎ ‎some well-known graph invariants such as the Wiener index‎, ‎Schultz‎ ‎index‎, ‎eccentric connectivity index‎, ‎total eccentricity‎, ‎eccentric-distance sum‎, ‎the first Zagreb index and coindex and the‎ ‎first multiplicative Zagreb index and coindex‎.

Keywords

Main Subjects


Y‎. ‎Alizadeh‎, ‎M‎. ‎Azari and T‎. ‎Doslic (2013). ‎Computing the‎ ‎eccentricity-related invariants of single-defect carbon nanocones. J‎. ‎Comput‎. ‎Theor‎. ‎Nanosci.. 10 (6), 1297-1300 A‎. ‎R‎. ‎Ashrafi‎, ‎T‎. ‎Dos}lic and A‎. ‎Hamzeh (2010). ‎The Zagreb coindices of graph‎ ‎operations. Discrete Appl‎. ‎Math.. 158, 1571-1578 ‎Azari‎ (2014). ‎Sharp lower bounds on the Narumi-Katayama index of‎ ‎graph operations. Appl‎. ‎Math‎. ‎Comput.. 239, 409-421 M‎. ‎Azari and A‎. ‎Iranmanesh (2013). ‎Chemical graphs constructed from‎ ‎rooted product and their Zagreb indices. MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem.. 70, 901-919 M‎. ‎Azari and A‎. ‎Iranmanesh (2013). ‎Computing the eccentric-distance‎ ‎sum for graph operations. Discrete Appl‎. ‎Math.. 161 (18), 2827-2840 M‎. ‎Azari and A‎. ‎Iranmanesh ‎Some inequalities for the‎ ‎multiplicative sum Zagreb index of graph operations. J‎. ‎Math‎. ‎Inequal., ‎(to appear). P‎. ‎Dankelmann‎, ‎W‎. ‎Goddard and C‎. ‎S‎. ‎Swart (2004). ‎The average‎ ‎eccentricity of a graph and its subgraphs. Util‎. ‎Math.. 65, 41-51 M‎. ‎Eliasi (2012). ‎A simple approach to order the‎ ‎multiplicative Zagreb indices of connected graphs. Trans‎. ‎Comb.. 1 (4), 17-24 M‎. ‎Eliasi‎, ‎A‎. ‎Iranmanesh and I‎. ‎Gutman (2012). ‎Multiplicative‎ ‎Versions of first Zagreb index. MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem.. 68, 217-230 M‎. ‎Eliasi and D‎. ‎Vukicevic (2013). ‎Comparing the‎ ‎Multiplicative Zagreb indices. MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem.. 69, 765-773 F‎. ‎Falahati Nezhad‎, ‎A‎. ‎Iranmanesh‎, ‎A‎. ‎Tehranian and M‎. ‎Azari ‎Strict lower bounds on the multiplicative Zagreb indices of graph‎ ‎operations. Ars Combin., ‎(to appear). S‎. ‎Gupta‎, ‎M‎. ‎Singh and A‎. ‎K‎. ‎Madan (2002). ‎Eccentric distance sum‎: ‎A‎ ‎novel graph invariant for predicting biological and physical‎ ‎properties. J‎. ‎Math‎. ‎Anal‎. ‎Appl.. 275, 386-401 I‎. ‎Gutman (2011). ‎Multiplicative Zagreb indices of trees. ‎Bull‎. ‎Int‎. ‎Math‎. ‎Virtual Inst.. 1, 13-19 I‎. ‎Gutman and O‎. ‎E‎. ‎Polansky (1986). Mathematical Concepts in‎ ‎Organic Chemistry. pringer‎, ‎Berlin. I‎. ‎Gutman and N‎. ‎Trinajstic (1972). ‎Graph theory and molecular‎ ‎orbitals‎. ‎Total $\pi$-electron energy of alternant hydrocarbons. Chem‎. ‎Phys‎. ‎Lett.. 17, 535-538 A‎. ‎Ilic‎, ‎G‎. ‎Yu and L‎. ‎Feng (2011). ‎On the eccentric distance sum‎ ‎of graphs. J‎. ‎Math‎. ‎Anal‎. ‎Appl.. 381, 590-600 M‎. ‎H‎. ‎Khalifeh‎, ‎H‎. ‎Yusefi-Azari and A‎. ‎R‎. ‎Ashrafi (2009). ‎The first‎ ‎and second Zagreb indices of some graph operations. Discrete‎ ‎Appl‎. ‎Math.. 157, 804-811 S‎. ‎Nikolic‎, ‎G‎. ‎Kovacevic‎, ‎A‎. ‎Milicevic and N‎. ‎Trinajstic (2003). ‎The Zagreb indices 30 years after. Croat‎. ‎Chem‎. ‎Acta.. 76, 113-124 T‎. ‎Reti and I‎. ‎Gutman (2012). ‎Relations between ordinary and‎ ‎multiplicative Zagreb indices. Bull‎. ‎Int‎. ‎Math‎. ‎Virtual Inst.. 2, 133-140 H‎. ‎P‎. ‎Schultz (1989). ‎Topological organic chemistry 1‎. ‎Graph theory‎ ‎and topological indices of alkanes. J‎. ‎Chem‎. ‎Inf‎. ‎Comput‎. ‎Sci.. 29, 227-228 V‎. ‎Sharma‎, ‎R‎. ‎Goswami and A‎. ‎K‎. ‎Madan (1997). ‎Eccentric connectivity‎ ‎index‎: ‎A novel highly discriminating topological descriptor for‎ ‎structure-property and structure-activity studies. J‎. ‎Chem‎. ‎Inf‎. ‎Comput‎. ‎Sci.. 37, 273-282 R‎. ‎Todeschini and V‎. ‎Consonni (2010). ‎New local vertex invariants‎ ‎and molecular descriptors based on functions of the vertex‎ ‎degrees. MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem.. 64, 359-372 H‎. ‎Wiener (1947). ‎Correlation of heats of isomerization and‎ ‎differences in heats of vaporization of isomers among the paraffin‎ ‎hydrocarbons. J‎. ‎Amer‎. ‎Chem‎. ‎Soc.. 69 (1), 2636-2638 H‎. ‎Wiener (1947). ‎Structural determination of paraffin boiling‎ ‎points. J‎. ‎Am‎. ‎Chem‎. ‎Soc.. 69 (1), 17-20 K‎. ‎Xu‎, ‎K‎. ‎C‎. ‎Das and K‎. ‎Tang (2013). ‎On the multiplicative Zagreb‎ ‎coindex of graphs. Opuscula Math.. 33 (1), 191-204 K‎. ‎Xu and H‎. ‎Hua (2012). ‎A unified approach to extremal‎ ‎multiplicative Zagreb indices for trees‎, ‎unicyclic and bicyclic‎ ‎graphs. MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem.. 68, 241-256 B‎. ‎Zhou (2004). ‎Zagreb indices. MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem.. 52, 113-118