Y. Alizadeh, M. Azari and T. Doslic (2013). Computing the
eccentricity-related invariants of single-defect carbon nanocones. J. Comput. Theor. Nanosci.. 10 (6), 1297-1300 A. R. Ashrafi, T. Dos}lic and A. Hamzeh (2010). The Zagreb coindices of graph operations. Discrete Appl. Math.. 158, 1571-1578 Azari (2014). Sharp lower bounds on the Narumi-Katayama index of graph operations. Appl. Math. Comput.. 239, 409-421 M. Azari and A. Iranmanesh (2013). Chemical graphs constructed from
rooted product and their Zagreb indices. MATCH Commun. Math.
Comput. Chem.. 70, 901-919 M. Azari and A. Iranmanesh (2013). Computing the eccentric-distance sum for graph operations. Discrete Appl. Math.. 161 (18), 2827-2840 M. Azari and A. Iranmanesh Some inequalities for the multiplicative sum Zagreb index of graph operations. J. Math. Inequal., (to appear). P. Dankelmann, W. Goddard and C. S. Swart (2004). The average eccentricity of a graph and its subgraphs. Util. Math.. 65, 41-51 M. Eliasi (2012). A simple approach to order the
multiplicative Zagreb indices of connected graphs. Trans. Comb.. 1 (4), 17-24 M. Eliasi, A. Iranmanesh and I. Gutman (2012). Multiplicative Versions of first Zagreb index. MATCH Commun. Math. Comput. Chem.. 68, 217-230 M. Eliasi and D. Vukicevic (2013). Comparing the Multiplicative Zagreb indices. MATCH Commun. Math. Comput. Chem.. 69, 765-773 F. Falahati Nezhad, A. Iranmanesh, A. Tehranian and M. Azari Strict lower bounds on the multiplicative Zagreb indices of graph operations. Ars Combin., (to appear). S. Gupta, M. Singh and A. K. Madan (2002). Eccentric distance sum: A novel graph invariant for predicting biological and physical properties. J. Math. Anal. Appl.. 275, 386-401 I. Gutman (2011). Multiplicative Zagreb indices of trees. Bull. Int. Math. Virtual Inst.. 1, 13-19 I. Gutman and O. E. Polansky (1986). Mathematical Concepts in Organic Chemistry. pringer, Berlin. I. Gutman and N. Trinajstic (1972). Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett.. 17, 535-538 A. Ilic, G. Yu and L. Feng (2011). On the eccentric distance sum of graphs. J. Math. Anal. Appl.. 381, 590-600 M. H. Khalifeh, H. Yusefi-Azari and A. R. Ashrafi (2009). The first and second Zagreb indices of some graph operations. Discrete Appl. Math.. 157, 804-811 S. Nikolic, G. Kovacevic, A. Milicevic and N. Trinajstic (2003). The Zagreb indices 30 years after. Croat. Chem. Acta.. 76, 113-124 T. Reti and I. Gutman (2012). Relations between ordinary and multiplicative Zagreb indices. Bull. Int. Math. Virtual Inst.. 2, 133-140 H. P. Schultz (1989). Topological organic chemistry 1. Graph theory and topological indices of alkanes. J. Chem. Inf. Comput. Sci.. 29, 227-228 V. Sharma, R. Goswami and A. K. Madan (1997). Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inf. Comput. Sci.. 37, 273-282 R. Todeschini and V. Consonni (2010). New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem.. 64, 359-372 H. Wiener (1947). Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffin hydrocarbons. J. Amer. Chem. Soc.. 69 (1), 2636-2638 H. Wiener (1947). Structural determination of paraffin boiling points. J. Am. Chem. Soc.. 69 (1), 17-20 K. Xu, K. C. Das and K. Tang (2013). On the multiplicative Zagreb coindex of graphs. Opuscula Math.. 33 (1), 191-204 K. Xu and H. Hua (2012). A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs. MATCH Commun. Math. Comput. Chem.. 68, 241-256 B. Zhou (2004). Zagreb indices. MATCH Commun. Math. Comput. Chem.. 52, 113-118