S. Chen and W. Liu (2014). Extremal Zagreb indices of graphs with a given number of cut edges. Graphs Combin.. 30, 109-118
H. Deng (2007). A unified approach to the extremal Zagreb indices of trees, unicyclic graphs and bicyclic graphs. MATCH Commun. Math. Comput. Chem.. 57, 597-616
B. Furtula, I. Gutman and M. Dehmer (2013). On structure--sensitivity of degree--based topological indices. Appl. Math. Comput.. 219, 8973-8978
M. Goubko (2014). Minimizing degree--based topological indices for trees with given number of pendent vertices. MATCH Commun. Math. Comput. Chem.. 71, 33-46
M. Goubko and I. Gutman (2014). Degree--based topological indices: Optimal trees with given number of pendents. Appl. Math. Comput.. 240, 387-398
M. Goubko and T. R'eti (2014). Note on minimizing degree--based topological indices of trees with given number of pendent vertices. MATCH Commun. Math. Comput. Chem.. 72, 633-639
I. Gutman (2013). Degree--based topological indices. Croat. Chem. Acta. 86, 351-361
I. Gutman and M. Goubko (2013). Trees with fixed number of pendent vertices with minimal first Zagreb index. Bull. Int. Math. Virtual Inst.. 3, 161-164
I. Gutman and N. Trinajsti'c (1972). Graph theory and molecular orbitals. Total $pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett.. 17, 535-538
I. Gutman and K. C. Das (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem.. (50), 83-92
R. Kazemi (2013). Probabilistic analysis
of the first Zagreb index. Trans. Comb.. 2 (2), 35-40
S. Li, H. Yang and Q. Zhao (2012). Sharp bounds on Zagreb indices of cacti with $k$ pendent vertices. Filomat. 26, 1189-1200
K. Xu, K. C. Das and S. Balachandran (2014). Maximizing the Zagreb indices of $(n,m)$-graphs. MATCH Commun. Math. Comput. Chem.. 72, 641-654
Q. Zhao and S. Li (2010). Sharp bounds for the Zagreb indices of bicyclic graphs with $k$-pendent vertices. Discrete Appl. Math.. 158, 1953-1962