C. Adiga, R. Balakrishnan and W. So (2010). The skew energy of a digraph. Linear Algebra Appl.. 432, 1825-1835
M. Cavers, S. M. Cioab, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J. McDonald and M. Tsatsomeros (2012). Skew-adjacency matrices of graphs. Linear Algebra Appl.. 436, 4512-4529
P. Chen, G. Xu and L. Zhang (2013). Ordering the oriented unicyclic graphs whose skew-spectral radius is bounded by 2. J. Inequal. Appl.. 2013, 12
X. Li and H. Lian A survey on the skew energy of oriented graphs. arXiv: 1304.5707.
B. Shader and W. So (2009). Skew spectra of oriented graphs. Electron. J. Combin.. 16 (1), 6
G. Xu (2012). Some inequalities on the skew-spectral radii of oriented graphs. J. Inequal. Appl.. 2012, 13
G. Xu and S. Gong (2013). On oriented graphs whose skew spectral radii do not exceed 2. Linear Algebra Appl.. 439, 2878-2887
X. Chen, X. Li and H. Lian Lower bounds of the skew spectral radii and skew energy of oriented graphs. arxiv.org/abs/1405.4972.
I. Gutman (1974). Bounds for total¦Ð-electron energy. Chem. Phys. Lett.. 24, 283-285
J. H. Koolen, V. Moulton and I. Gutman (2000). Improving the McClelland inequality for total¦Ð-electron energy. Chem. Phys. Lett.. 320, 213-216
J. H. Koolen and V. Moulton (2001). Maximal energy graphs. Adv. Appl. Math.. 26, 47-52
B. Zhou (2004). Energy of a graph. MATCH Commun. Math. Comput. Chem.. (51), 111-118
B. Zhou, I. Gutman and T. Aleksic (2008). A note on Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem.. 60, 441-446
G. Tian (2011). On the skew energy of orientations of hypercubes. Linear Algebra Appl.. 435, 2140-2149