F. Ayoobi, G. R. Omidi and B. Tayfeh-Rezaie (2011). A note on graphs whose signless Laplacian has three distinct eigenvalues. Linear and Multilinear Algebra. 59, 701-706 S. B. Bozkurt and I. Gutman (2013). Estimating the incidence energy. MATCH Commun. Math. Comput. Chem.. 70, 143-156 T. A. Chishti, Hilal A. Ganie and S. Pirzada (2014). Properties of strong double graphs. J. Discrete Math. Sci. Cryptogr.. 17, 311-319 D. Cvetkovic, M. Doob and H. Sachs (1980). Spectra of graphs-Theory and Application. Academic Press, New York. D. Cvetkovic, P. Rowlinson and S. K. Simic (2007). Signless Laplacians of finite graphs. Linear Algebra Appl.. 423, 155-171 D. Cvetkovic and S. K. Simic (2009). Towards a spectral theory of graphs based on the signless Laplacian, I. Publ. Inst. Math., (Beograd) (N. S.). 85, 19-33 S. S. Dragomir (2003). A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities. JIPAM. J. Inequal. Pure Appl. Math.. 4, 142 K. C. Das (2007). A sharp upper bound for the number of spanning trees of a graph. Graphs Combin.. 23, 625-632 M. Fiedler (1973). Algebraic Connectivity of Graphs. Czechoslovak Math. J.. 23, 298-305 R. Grone and R. Merris (1994). The Laplacian spectrum of a graph II. SIAM J. Discrete Math.. 7, 221-229 I. Gutman (2001). The energy of a graph: old and new results. Algebraic combinatorics and applications (Gößweinstein, 1999), Springer, Berlin. , 196-211 I. Gutman, D. Kiani and M. Mirzakhah (2009). On incidence energy of graphs. MATCH Commun. Math. Comput. Chem.. 62, 573-580 I. Gutman, D. Kiani, M. Mirzakhah and B. Zhou (2009). On incidence energy of a graph. Linear Algebra Appl.. 431, 1223-1233 I. Gutman and B. Zhou (2006). Laplacian energy of a graph. Linear Algebra Appl.. 414, 29-37 I. Gutman, B. Zhou and B. Furtula (2010). The Laplacian-energy like invariant is an energy like invariant. MATCH Commun. Math. Comput. Chem.. 64, 85-96 H. A. Ganie, S. Pirzada and I. Antal (2014). Energy and Laplacian energy of double graphs. Acta Univ. Sap. Informatica. 6, 89-116 M. Jooyandeh, D. Kiani and M. Mirzakhah (2009). Incidence energy of a graph. MATCH Commun. Math. Comput. Chem.. 62, 561-572 S. J. Kirkland, J. J. Molitierno, M. Neumann and B. L. Shader (2002). On graphs with equal algebraic and vertex connectivity. Linear Algebra Appl.. 341, 45-56 M. Liu and B. Liu (2012). On sum of powers of the signless Laplacian eigenvalues of graphs. Hacet. J. Math. Stat.. 41, 527-536 J. Liu and B. Liu (2008). A Laplacian-energy-like invariant of a graph. MATCH Commun. Math. Comput. Chem.. 59, 355-372 M. Liu, B. Liu and X. Tan (2014). The first to ninth greatest LEL-invariants of connected graphs. Util. Math.. 93, 153-160 A. Mohammadian and B. Tayfeh-Rezaie (2011). Graphs with four distinct Laplacian eigenvalues. J. Algebraic Combin.. 34, 671-682 S. Pirzada (2012). An Introduction to Graph Theory. Universities Press, Orient Blackswan. Z. Tang and Y. Hou (2011). On incidence energy of trees. MATCH Commun. Math. Comput. Chem.. 66, 977-984 W. Wang and Y. Luo (2012). On Laplacian-energy-like invariant of a graph. Linear Algebra Appl.. 437, 713-721 B. Zhou (2010). More upper bounds for the incidence energy. MATCH Commun. Math.
Comput. Chem.. 64, 123-128 J. Zhang and J. Li (2012). New results on the incidence energy of graphs. MATCH Commun.
Math. Comput. Chem.. 68, 777-803 B. Zhou and A. Ilic (2010). On the sum of powers of Laplacian eigenvalues of bipartite graphs. Czechoslovak Math. J.. 60, 1161-1169 B. X. Zhu (2011). The Laplacian-energy like of graphs. Appl. Math. Lett.. 24, 1604-1607