M. Anderson, C. Barrientos, R. Brigham, J. Carrington, R. Vitray and J. Yellen (2007). Maximum demand graphs for eternal security. J. Combin. Math. Combin. Comput.. 61, 111-128 A. P. Burger, E. J. Cockayne, W. R. Grundlingh, C. M. Mynhardt, J. H. van Vuuren and W. Winterbach (2004). Infinite order domination in graphs. J. Combin. Math. Combin. Comput.. 50, 179-194 E. J. Cockayne, O. Favaron, C. M. Mynhardt and J. Puech (2000). A characterisation of $(\gamma,i)$-trees. J. Graph Theory. 34, 277-292 M. Dorfling, W. Goddard, M A. Henning and C. M. Mynhardt (2006). Construction of trees and graphs with equal domination parameters. Discrete Math.. 306, 2647-2654 W. Goddard, S. M. Hedetniemi and S. T. Hedetniemi (2005). Eternal security in graphs. J. Combin. Math. Combin. Comput.. 52, 169-180 J. Goldwasser and W. F. Klostermeyer (2008). Tight bounds for eternal dominating sets in graphs. Discrete Math.. 308, 2589-2593 J. L. Goldwasser, W. F. Klostermeyer and C. M. Mynhardt (2013). Eternal protection in grid graphs. Util. Math.. 91, 47-64 W. F. Klostermeyer, M. Lawrence and G. MacGillivray An eternal domination problem related to file migration. to appear in J. Combin. Math. Combin. Comput.. W. F. Klostermeyer and G. MacGillivray (2007). Eternal security in graphs of fixed independence number. J. Combin. Math. Combin. Comput.. 63, 97-101 W. F. Klostermeyer and G. MacGillivray (2009). Eternal dominating sets in
graphs. J. Combin. Math. Combin. Comput.. 68, 97-111 W. F. Klostermeyer and C. M. Mynhardt (2009). Edge protection in graphs. Australas. J. Combin.. 45, 235-250 W. F. Klostermeyer and C. M. Mynhardt (2011). Graphs with equal eternal vertex cover and eternal domination numbers. Discrete Math.. 311, 1371-1379 W. F. Klostermeyer and C. M. Mynhardt (2012). Vertex covers and eternal dominating sets. Discrete Appl. Math.. 160, 1183-1190 W. F. Klostermeyer and C. M. Mynhardt (2012). Eternal total domination in graphs. Ars Combin. 107, 473-492 C. M. Mynhardt (1999). Vertices contained in every minimum dominating set of a tree. J. Graph Theory. 31, 163-177