S. Kim et al. have been analyzed the girth of some algebraically structured quasi-cyclic (QC) low-density parity-check (LDPC) codes, i.e. Tanner $(3,5)$ of length $5p$, where $p$ is a prime of the form $15m+1$. In this paper, by extension this method to Tanner $(3,7)$ codes of length $7p$, where $p$ is a prime of the form $21m+ 1$, the girth values of Tanner $(3,7)$ codes will be derived. As an advantage, the rate of Tanner $(3,7)$ codes is about $0.17$ more than the rate of Tanner $(3,5)$ codes.
M. P. C. Fossorier (2004). Quasi-cyclic low-density parity-check codes from circulant
permutation matrices. IEEE Trans. Inf. Theory. 50 (8), 1788-1793 R. G. Gallager (1963). Low-Density Parity-Check Codes. Cambridge, MA: MIT. Press. S. Kim, J.-S. No, H. Chung, and D.-J.Shin (2006). On the girth of Tanner's $(3, 5)$
quasi-cyclic LDPC codes. IEEE Trans. Inf. Theory. 52 (4), 1739-1744 R. Lucas, M. P. C Fossorier, and Y. Kou, S.
Lin (2000). Iterative decoding of onestep majority logic decodable codes
based on belief propagation. 48 (6), 931-937 D. J. C. Mackay (1999). Good error-correcting codes based on very
sparse matrices. IEEE Trans. Info. Theory. 45 (2), 399-431 C. E. Shannon (1949). The Mathematical Theory of Information. Urbana, IL:University of IllinoisPress, (reprinted
1998). R. M. Tanner, D. Sridhara, and T. E. Fuja (2001). A class of group-structured LDPC
codes. in Proc. Int. Symp. Communication Theory and
Applications, Ambleside, U.K., Jul.. R. M. Tanner (1981). A recursive approach to low complexity codes. IEEE Trans.
Inform. Theory. 27, 533-547 R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J.
Costello (2004). LDPC Block and Convolutional Codes Based on Circulant
Matrices. IEEE Trans. Inf. Theory. 50 (12), 2966-2984
Gholami, M., & Mostafaiee, F. (2012). On the girth of Tanner (3,7) quasi-cyclic LDPC codes. Transactions on Combinatorics, 1(2), 1-16. doi: 10.22108/toc.2012.762
MLA
Mohammad Gholami; Fahime Sadat Mostafaiee. "On the girth of Tanner (3,7) quasi-cyclic LDPC codes". Transactions on Combinatorics, 1, 2, 2012, 1-16. doi: 10.22108/toc.2012.762
HARVARD
Gholami, M., Mostafaiee, F. (2012). 'On the girth of Tanner (3,7) quasi-cyclic LDPC codes', Transactions on Combinatorics, 1(2), pp. 1-16. doi: 10.22108/toc.2012.762
VANCOUVER
Gholami, M., Mostafaiee, F. On the girth of Tanner (3,7) quasi-cyclic LDPC codes. Transactions on Combinatorics, 2012; 1(2): 1-16. doi: 10.22108/toc.2012.762