[1] G. B. Belyavskaya, $r$-Orthogonal quasigroups I, Math. Issled., 39 (1976) 32–39.
[2] G. B. Belyavskaya, $r$-Orthogonal quasigroups II, Math. Issled., 43 (1976) 39–49.
[3] G. B. Belyavskaya, $r$-Orthogonal Latin squares, in: J. Dénes and A. D. Keedwell (Editors), Latin Squares: New Developments, Elsevier, North-Holland, Amsterdam, 1992.
[4] C. J. Colbourn and L. Zhu, The spectrum of r-orthogonal Latin squares, C. J. Colbourn, E. S. Mahmoodian (Editors), Combinatorics advances (Tehran, 1994), Kluwer Academic Press, Dordrecht, 1995 49–75.
[5] P. Dukes and J. Howell, The orthogonality spectrum for Latin squares of different orders, Graphs Combin., 29 (2013) 71–78.
[6] J. Howell, The intersection problem and different pairs problem for Latin squares, Ph. D. dissertation, University of Victoria, 2010.
[7] H. J. Ryser, A combinatorial theorem with an application to Latin rectangles, Proc. Amer. Math. Soc., 2 (1951) 550–552.
[8] L. Zhu and H. Zhang, A few more $r$-orthogonal Latin squares, Discrete Math., 238 (2001) 183–191.
[9] L. Zhu and H. Zhang, Completing the spectrum of $r$-orthogonal Latin squares, Discrete Math., 268 (2003) 343–349.