Congruences from $q$-Catalan Identities

Document Type : Research Paper


Department of Mathematics, The University of Iowa


In this paper‎, ‎by studying three $q$-Catalan identities given by Andrews‎, ‎we arrive at a certain number of congruences‎. ‎These congruences are all modulo $\Phi_n(q)$‎, ‎the $n$-th cyclotomic polynomial or the related functions and modulo $q$-integers‎.


Main Subjects

[1] C. A. Pickover, The Math Book: From Pythagoras to the 57th Dimension, 250, Milestones in the History of
Mathematics, Sterling, New York, 2009.
[2] T. Koshy, Catalan Numbers with Applications, Oxford Univ. Press, New York, 2009.
[3] R. P. Stanley, Enumerative Combinatorics, 2, Cambridge Univ. Press, 1999.
[4] R. P. Stanley, Catalan Numbers, Cambridge Univ. Press, 2015.
[5] H. W. Gould, Bell and Catalan Numbers: Research Bibliography of Two Special Number Sequences, rev. ed., Com-
binatorial Research Institute, Morgantown, WV, 1978.
[6] J. Furlinger and J. Hofbauer, q-Catalan numbers, J. Combin. Theory Ser. A, 40 (1985) 248{264.
[7] G. Gasper and M. Rahman, Basic Hypergeometric Series, second ed., Encyclopedia Math. Appl., 96, Cambridge
Univ. Press, Cambridge, 2004.
[8] G. E. Andrews, On the difference of successive Gaussian polynomials, J. Statist. Plann. Inference, 34 (1993) 19{22.
[9] G. E. Andrews, Catalan numbers, q-Catalan numbers and hypergeometric series, J. Combin. Theory Ser. A, 44
(1987) 267{273.
[10] G. E. Andrews, q-Catalan Identities, The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer,
New York, (2010) 183{190.
[11] R. Tauraso, q-Analogs of some congruences involving Catalan numbers, Adv. in Appl. Math., 48 (2012) 603{614.
[12] W. E. Clark, q-Analogue of a binomial coefficient congruence, Internat. J. Math. Math. Sci., 18 (1995) 197{200.
[13] E. Allen, Department of Mathematical Sciences, Carnegie Mellon University, Combinatorial Interpretations of Gen-
eralizations of Catalan Numbers And Ballot Numbers, 2014, PhD Thesis. Available at: http://repository.cmu.
[14] G.E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl., 2, Addison-Wesley, Reading, MA, 1976.
[15] E. Catalan, Question 1135, Nouvelles Annales de Mathematiques, Journal des Candidats aux Ecole Polytechnic et
Normale, Series 2, 13 (1874) pp. 207.
[16] G. E. Andrews, Applications of basic hypergeometric functions, SIAM Rev., 16 (1974) 441{484.
Volume 5, Issue 4 - Serial Number 4
December 2016
Pages 57-67
  • Receive Date: 13 February 2016
  • Revise Date: 24 May 2016
  • Accept Date: 26 July 2016
  • Published Online: 01 December 2016