[1] P. Erdos and T. Gallai, Graphs with prescrib ed degrees (in Hungarian), Matemoutiki Lapor, 11 (1960) 264-274.
[2] R. J. Gould, M. S. Jacobson and J. Lehel, Potentially G-graphical degree sequences, in Combinatorics, Graph Theory, and Algorithms (Y. Alavi et al., eds.), 1,2, Kalamazo o, MI, 1999 451-460.
[3] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph, I. J. Soc. Indust. Appl. Math., 10 (1962) 496-506.
[4] V. Havel, A Remark on the existance of nite graphs (Czech), Casopis Pest. Mat., 80 (1955) 477-480.
[5] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Blackswan, India, 2012.
[6] S. Pirzada and J. H. Yin, Degree sequences in graphs, J. Math. Study, 39 (2006) 25-31
[7] S. Pirzada and Bilal A. Chat, Potentially graphic sequences of split graphs, Kragujevac J. Math., 38 (2014) 73-81.
[8] S. Pirzada, Bilal A. Chat and Faro o q A. Dar, Graphical sequences of some family of induced subgraphs, J. Algebra Comb. Discrete Struct. Appl., 2 (2015) 95-109.
[9] A. R. Rao, An Erdos-Gallai type result on the clique numb er of a realization of a degree sequence, Unpublished.
[10] A. R. Rao, The clique number of a graph with given degree sequence, Graph Theory, Proc. Symp. Calcutta 1976, ISI Lecture Notes, 4 (A. R. Rao, ed.), 1979 251-267.
[11] J. H. Yin, A Havel-Hakimi typ e pro cedure and a sufficient condition for a sequence to be potentially Sr,s-graphic, Czechoslovak Math. J., 62 (2012) 863-867.