A simple approach to order the multiplicative Zagreb indices of connected graphs

Document Type : Research Paper

Author

Department of Mathematics and Computer Science , Faculty of Khansar, Khansar, Iran

Abstract

The first ($\Pi_1$) and the second $(\Pi_2$) multiplicative Zagreb indices of a connected graph $G$‎, ‎with vertex set‎ ‎$V(G)$ and edge set $E(G)$‎, ‎are defined as $\Pi_1(G) = \prod_{u \in‎ ‎V(G)} {d_u}^2$ and $\Pi_2(G) = \prod_{uv \in‎‎E(G)} {d_u}d_{v}$‎, ‎respectively‎, ‎where ${d_u}$ denotes the degree of the vertex $u$‎. ‎In this paper we present a simple approach to order these indices for connected graphs on the same number of vertices‎. ‎Moreover‎, ‎as an application of this‎ ‎simple approach‎, ‎we extend the known ordering of the first and the second multiplicative Zagreb indices‎ ‎for some classes of connected graphs‎.

Keywords

Main Subjects


J. Braun, A. Kerber, M. Meringer and C. Rucker (2005). Similarity of molecular descriptors: The equivalence of Zagreb indices and walk counts. MATCH Commun. Math. Comput. Chem.. 54, 163-176 T. Do\v{s}li\'c, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi (2011). On vertex--degree--based molecular structure descriptors. MATCH Commun. Math. Comput. Chem.. 66, 613-626 I. Gutman (2011). Multiplicative Zagreb indices of trees. Bull. Int. Math. Virt. Inst.. 1, 13-19 I. Gutman and K. C. Das (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem.. 50, 83-92 I. Gutman and M. Ghorbani (2012). Some properties of the Narumi--Katayama index. Appl. Math. Lett.. 25 (10), 1435-1438 I. Gutman and N. Trinajsti\'{c} (1972). Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett.. 17, 535-538 M. Liu (2010). A Simple Approach to Order the First Zagreb Indices of Connected Graphs. MATCH Commun. Math. Comput. Chem.. 63, 425-432 M. Karelson (2000). Molecular Descriptors in QSAR/QSPR. Wiley, New York. A. W. Marshall and I. Olkin (1979). Inequalities, Theory of Majorization. Academic Press, New York. H. Narumi and M. Katayama (1984). Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons. Mem. Fac. Engin. Hokkaido Univ.. 16, 209-214 S. Nikoli\'{c}, G. Kova\v{c}evi\'{c}, A. Mili\v{c}evi\'{c} and N. Trinajsti\'{c} (2003). The Zagreb indices 30 years after. Croat. Chem. Acta. 76, 113-124 D. Vuki\v{c}evi\'c, I. Gutman, B. Furtula, V. Andova and D. Dimitrov (2011). Some observations on comparing Zagreb indices. MATCH Commun. Math. Comput. Chem.. 66, 627-645 K. Xu and H. Hua (2012). A Unified Approach to Extremal Multiplicative Zagreb Indices for Trees, Unicyclic and Bicyclic Graphs. MATCH Commun. Math. Comput. Chem.. 54, 241-256 B. Zhou (2004). Zagreb indices. MATCH Commun. Math. Comput. Chem.. 52, 113-118 B. Zhou and I. Gutman (2004). Relations between Wiener, hyper-Wiener and Zagreb indices. Chem. Phys. Lett.. 394, 93-95 B. Zhou and I. Gutman (2005). Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem.. 54, 233-239
Volume 1, Issue 4 - Serial Number 4
December 2012
Pages 17-24
  • Receive Date: 30 October 2012
  • Revise Date: 03 December 2012
  • Accept Date: 04 December 2012
  • Published Online: 01 December 2012