A set $D$ of vertices of graph $G$ is called $double$ $dominating$ $set$ if for any vertex $v$, $|N[v]\cap D|\geq 2$. The minimum cardinality of $double$ $domination$ of $G$ is denoted by $\gamma_d(G)$. The minimum number of edges $E'$ such that $\gamma_d(G\setminus E)>\gamma_d(G)$ is called the double bondage number of $G$ and is denoted by $b_d(G)$. This paper determines that $b_d(G\vee H)$ and exact values of $b(P_n\times P_2)$, and generalized corona product of graphs.
Maimani, H. and Koushki, Z. (2019). On the double bondage number of graphs products. Transactions on Combinatorics, 8(1), 51-59. doi: 10.22108/toc.2018.114111.1605
MLA
Maimani, H. , and Koushki, Z. . "On the double bondage number of graphs products", Transactions on Combinatorics, 8, 1, 2019, 51-59. doi: 10.22108/toc.2018.114111.1605
HARVARD
Maimani, H., Koushki, Z. (2019). 'On the double bondage number of graphs products', Transactions on Combinatorics, 8(1), pp. 51-59. doi: 10.22108/toc.2018.114111.1605
CHICAGO
H. Maimani and Z. Koushki, "On the double bondage number of graphs products," Transactions on Combinatorics, 8 1 (2019): 51-59, doi: 10.22108/toc.2018.114111.1605
VANCOUVER
Maimani, H., Koushki, Z. On the double bondage number of graphs products. Transactions on Combinatorics, 2019; 8(1): 51-59. doi: 10.22108/toc.2018.114111.1605