[1] AIM Minimum Rank – Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler and S. M. Cioabă, D.
Cvetković, S. M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha,
W. So, D. Stevanović, H. van der Holst, K. Vander Meulen and A. Wangsness), Zero forcing sets and the minimum
rank of graphs, Linear Algebra Appl., 428 (2008) 1628–1648.
[2] F. Barioli, W. Barrett, S. Fallat, H. T. Hall, L. Hogben, H. van der Holst and B. Shader, Zero forcing parameters
and minimum rank problems, Linear Algebra Appl., 433 (2010) 401–411.
[3] F. Barioli, S. Fallat, D. Hershkowitz, H. T. Hall, L. Hogben, H. van der Holst and B. Shader, On the minimum rank
of not necessarily symmetric matrices: a preliminary study, Electron. J. Linear Algebra, 18 (2009) 126–145.
[4] F. Barioli, W. Barrett, S. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche and H. van der Holst,
Parameters related to tree-width, zero forcing, and maximum nullity of a graph, J. Graph Theory, 72 (2013) 146–177.
[5] B. Brimkov and R. Davila, Characterizations of the Connected Forcing Number of a Graph, https://arxiv.org/
pdf/1604.00740.
[6] S. Butler and M. Young, Throttling zero forcing propagation speed on graphs, Australas. J. Combin., 57 (2013)
65–71.
[7] K. B. Chilakamarri, N. Dean, C. X. Kang and E. Yi, Iteration index of a zero forcing set in a graph, Bull. Inst.
Combin. Appl., 64 (2012) 57–72.
[8] J. Ekstrand, C. Erickson, H. T. Hall, D. Hay, L. Hogben, R. Johnson, N. Kingsley, S. Osborne, T. Peters, J. Roat,
A. Ross, D. Row, N. Warnberg and M. Young, Positive semidefinite zero forcing, Linear Algebra Appl., 439 (2013)
1862–1874.
[9] S. Fallat and L. Hogben, The minimum rank of symmetric matrices described by a graph: a survey, Linear Algebra
Appl., 426 (2007) 558–582.
[10] L. Hogben, Minimum rank problems, Linear Algebra Appl., 432 (2010) 1961–1974.
[11] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, Sh. Walker and M. Young, Propagation time for zero forcing on a
graph, Discrete Appl. Math., 160 (2012) 1994–2005.
[12] L.-H. Huang, G. J. Chang and H.-G. Yeh, On minimum rank and zero forcing sets of a graph, Linear Algebra Appl.,
432 (2010) 2961–2973.
[13] C. R. Johnson, R. Loewy and P. A. Smith, The graphs for which the maximum multiplicity of an eigenvalue is two,
Linear Multilinear Algebra, 57 (2009) 713–736.
[14] T. Peters, Semidefinite maximum nullity and zero forcing number, Electron. J. Linear Algebra, 23 (2012) 815–830.
[15] D. D. Row, A technique for computing the zero forcing number of a graph with a cut-vertex, Linear Algebra Appl.,
436 (2012) 4423–4432.