Zero-sum flow number of categorical and strong product of graphs

Document Type : Research Paper

Authors

1 Department of Mathematics, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan

2 Department of Mathematics COMSATS University Islamabad, Lahore Campus, 54000, Pakistan

3 Department of Mathematics, The University of Okara, Pakistan

Abstract

A zero-sum flow is an assignment of nonzero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum $k$-flow if the absolute values of edges are less than $k$. We define the zero-sum flow number of $G$ as the least integer $k$ for which $G$ admitting a zero sum $k$-flow.?
In this paper we gave complete zero-sum flow and zero sum numbers for categorical and strong product of two graphs namely cycle and paths.

Keywords

Main Subjects


[1] S. Akbari, A. Daemi, O. Hatami, A. Javanmard and A. Mehrabian, Zero-Sum Flows in Regular Graphs, Graphs
Combin., 2010 26 (2010) 603–615.
[2] S. Akbari, N. Ghareghani, G. B. Khosrovshahi and A. Mahmoody, On zero-sum 6-iflows of graphs, Linear Algebra
Appl., 430 (2009) 3047–3052.
[3] M. Baca and M. K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput., 235 (2014)
168–173.
[4] C. W. Chang, M. L. Chia, C. J. Hsu, D. Kuo, L. L. Lai and F. H. Wang, Global defensive alliances of trees and
Cartesian product of paths and cycles, Discrete Appl. Math., 160 (2012) 479–487.
[5] W. Imrich, S.Klavžar, Product Graphs, Structure and Recognition, John Wiley and Sons, New York, 2000.
[6] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B, 26 (1979) 205–216.
[7] D. F. Rall, Total domination in categorical products of graphs, Discussiones Mathematicae Graph Theory, 25 (2005)
35–44.
[8] P. D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B., 30 (1981) 130–135.
[9] M. K. Siddiqui, M. Miller and J. Ryan, Total edge irregularity strength of octagonal grid graph, Utilitas Math., 103
(2017) 277–287.
[10] C. Tardif and D. Wehlau, Chromatic numbers of products of graphs: The directed and undirected versions of the
PoljakRodl function, J. Graph Theory, 51 (2006) 33–36.
[11] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math., 6 (1954) 80–91.
[12] T. M. Wang and S. W. Hu, Zero-Sum Flow Numbers of Regular Graphs, Article in Lecture Notes in Computer
Science, 2012.
[13] T. M. Wang and S. W. Hu, Constant Sum Flows in Regular Graphs, In: Atallah, M. Li, X.-Y. Zhu, B. (eds.), 6681,
Springer, Heidelberg, 2011 168–175.
[14] T. M. Wang, S. W. Hu and G. Zhang, Zero-Sum Flow Numbers of Triangular Grids, Frontiers in Algorithmics
Volume of the series Lecture Notes in Computer Science, 8497 (2001) 264–275.
[15] T. M. Wang and G. H. Zhang, Zero-Sum Flow Numbers of Hexagonal Grids, In: M. Fellows, X. Tan, B. Zhu and
(eds.), 7924, Springer, Heidelberg, 2013 339–349.
Volume 9, Issue 4 - Serial Number 4
December 2020
Pages 181-199
  • Receive Date: 07 December 2019
  • Revise Date: 14 February 2020
  • Accept Date: 06 March 2020
  • Published Online: 01 December 2020