[1] E. R. van Dam and W. H. Haemers, Which graphs are determined by their spectrum, Linear Algebra and Appl.,
373 (2003) 241–272.
[2] E. R. van Dam and W. H. Haemers, Developments on spectral characterizations of graphs, Discrete Math., 309
(2009) 576–586.
[3] K. Ch. Das, The Laplacian spectrum of a graph, Comput. Math. Appl., 48 (2004) 715–724.
[4] H. Topcu, S. Sorgun and W. H. Haemers, On the spectral characterization of pineapple graphs, Linear Algebra
Appl., 507 (2016) 267–273.
[5] H. Topcu, S. Sorgun and W. H. Haemers, The graphs cospectral with the pineapple graph, Discrete Appl. Math.,
269 (2019) 52–59.
[6] F. Liu, J. Siemons and W. Wang, New families of graphs determined by their generalized spectrum, Discrete Math.,
342 (2019) 1108–1112.
[7] L. Mao, S. M. Cioabă and Wei. Wang, Spectral characterization of the complete graph removing a path of small
length, Discrete Appl. Math., 257 (2019) 260–268.
[8] M. Liu, H. Shan and X. Gu, Spectral characterization of the complete graph removing a path, Discrete Appl. Math.,
284 (2020) 499–512.
[9] X. Zhang and H. Zhang, Some graphs determined by their spectra, Linear Algebra Appl., 431 (2009) 1443–1454.
[10] S. Sorgun and H. Topcu, On the spectral characterization of kite graphs, J. Algebra Comb. Discrete Struct. Appl.,
3 (2016) 81–90.
[11] K. C. Das and M. Liu, Kite graphs are determined by their spectra, Applied Math. and Comp., 297 (2017) 74–78.
[12] H. Topcu and S. Sorgun, The kite graph is determined by its adjacency spectrum, Applied Math. and Comp., 330
(2018) 134–142.
[13] S. Sorgun and H. Topcu, On the Laplacian eigenvalues of the kite graph, Anadolu Univ. Bilim ve Teknoloji Dergisi
B- Teorik Bilimler, 6 (2018) 1–7.
[14] A. E. Brouwer and W. H. Haemers, Spectra of graphs, Springer, Amsterdam, 2011.
[15] D. Cvetković, P. Rowlinson and S. Simić, An introduction to the theory of graph spectra, Cambridge University
Press, 2010.